This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/DataStructure/SternBrocotTree.hpp"#pragma once
#include <iostream>
#include <numeric>
#include <ranges>
#include <stdexcept>
#include <tuple>
#include <vector>
namespace mtd {
template <class T, class CompT = long long>
class SternBrocotTree {
using Path = std::vector<std::tuple<bool, T>>;
static constexpr T MAX_NUM = static_cast<T>(2e18);
static constexpr T MAX_DEN = static_cast<T>(2e18);
class Node {
// 定数倍高速化のため破壊的変更や怪しい仕様あり
T num_l, den_l, num_r, den_r;
Path path_rle;
const T max_num;
const T max_den;
friend std::ostream& operator<<(std::ostream& os, const Node& node) {
return os << node.num_l + node.num_r << "/" << node.den_l + node.den_r
<< ": " << node.num_l << "/" << node.den_l << " "
<< node.num_r << "/" << node.den_r;
}
public:
static constexpr auto get_root(T max_num, T max_den) {
return Node(0, 1, 1, 0, Path(), max_num, max_den);
}
constexpr auto get() const {
return std::make_tuple(num_l + num_r, den_l + den_r);
}
constexpr auto get_l() const { return Node(num_l, den_l); }
constexpr auto get_r() const { return Node(num_r, den_r); }
constexpr auto get_path_rle() const { return path_rle; }
constexpr auto move_left(T d = 1) {
if (num_l > 0) { d = std::min(d, (max_num - num_r - num_l) / num_l); }
if (den_l > 0) { d = std::min(d, (max_den - den_r - den_l) / den_l); }
if (d <= 0) { return false; }
path_rle.emplace_back(false, d);
num_r += d * num_l;
den_r += d * den_l;
return true;
}
constexpr auto move_left_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_l * num_d - den_d * num_l;
T d =
(den_d * (num_l + num_r) - (den_l + den_r) * num_d + tmp - 1) / tmp;
return move_left(d);
}
constexpr auto move_right(T d = 1) {
if (num_r > 0) { d = std::min(d, (max_num - num_l - num_r) / num_r); }
if (den_r > 0) { d = std::min(d, (max_den - den_l - den_r) / den_r); }
if (d <= 0) { return false; }
path_rle.emplace_back(true, d);
num_l += d * num_r;
den_l += d * den_r;
return true;
}
constexpr auto move_right_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_d * num_r - den_r * num_d;
T d =
((den_l + den_r) * num_d - den_d * (num_l + num_r) + tmp - 1) / tmp;
return move_right(d);
}
constexpr static auto generate_node(T num, T den, T max_num, T max_den) {
if (den <= 0) {
throw std::runtime_error("denominator must be positive");
}
if (num < 0) {
throw std::runtime_error("numerator must be non-negative");
}
if (std::gcd(num, den) > 1) {
throw std::runtime_error("numerator and denominator must be coprime");
}
auto node = get_root(max_num, max_den);
while (node.move_left_to(num, den) || node.move_right_to(num, den)) {}
return node;
}
constexpr static auto decode(const Path& path_rle, T max_num = MAX_NUM,
T max_den = MAX_DEN) {
auto node = get_root(max_num, max_den);
for (const auto& [right, k] : path_rle) {
right ? node.move_right(k) : node.move_left(k);
}
return node;
}
constexpr Node(T num_l, T den_l, T num_r, T den_r, Path&& path_rle,
T max_num, T max_den)
: num_l(num_l),
den_l(den_l),
num_r(num_r),
den_r(den_r),
path_rle(std::move(path_rle)),
max_num(max_num),
max_den(max_den) {}
constexpr Node(T num_l, T den_l, T num_r, T den_r)
: Node(num_l, den_l, num_r, den_r, Path(), MAX_NUM, MAX_DEN) {}
constexpr Node(T num, T den)
: Node(generate_node(num, den, MAX_NUM, MAX_DEN)) {}
constexpr auto operator!=(const Node& other) const {
return std::tie(num_l, den_l, num_r, den_r) !=
std::tie(other.num_l, other.den_l, other.num_r, other.den_r);
}
constexpr auto operator==(const Node& other) const {
return !(*this != other);
}
};
public:
/*
* Encode the path from the root to the fraction num/den
**/
constexpr auto encode(const Node& node) const {
return node.get_path_rle();
}
constexpr auto encode(T num, T den) const { return encode(Node(num, den)); }
/*
* Decode the path from the root to the fraction represented by
**/
constexpr auto decode(const Path& path_rle) const {
return Node::decode(path_rle);
}
/*
* Find the lowest common ancestor of two fractions num1/den1 and num2/den2
**/
constexpr auto lca(const Node& node1, const Node& node2) const {
auto path_rle1 = encode(node1);
auto path_rle2 = encode(node2);
Path lca_path;
for (const auto [p1, p2] : std::views::zip(path_rle1, path_rle2)) {
auto [right1, k1] = p1;
auto [right2, k2] = p2;
if (right1 != right2) { return Node::get_root(MAX_NUM, MAX_DEN); }
lca_path.emplace_back(right1, std::min(k1, k2));
if (p1 != p2) { break; }
}
return decode(lca_path);
}
constexpr auto lca(T num1, T den1, T num2, T den2) const {
return lca(Node(num1, den1), Node(num2, den2));
}
/*
* Find the k-th ancestor of the fraction num/den
**/
constexpr auto ancestor(const Node& node, T k) const {
Path k_path_rle;
for (const auto& [right, count] : encode(node)) {
if (count > k) {
k_path_rle.emplace_back(right, k);
k = 0;
break;
} else {
k_path_rle.emplace_back(right, count);
k -= count;
}
}
if (k > 0) { throw std::runtime_error("k is too large for the path"); }
return decode(k_path_rle);
}
constexpr auto ancestor(T num, T den, T k) const {
return ancestor(Node(num, den), k);
}
/*
* Find the lower and upper bounds of the descendants of num/den
**/
constexpr auto range(const Node& node) const {
auto [num, den] = node.get();
if (num == 1 && den == 1) {
return std::make_tuple(Node(0, 0, 0, 1), Node(0, 0, 1, 0));
}
if (den == 1) { return std::make_tuple(node.get_l(), Node(0, 0, 1, 0)); }
if (num == 1) { return std::make_tuple(Node(0, 0, 0, 1), node.get_r()); }
return std::make_tuple(node.get_l(), node.get_r());
}
constexpr auto range(T num, T den) const { return range(Node(num, den)); }
/*
* Create a node representing the fraction num/den
**/
constexpr auto create_node(T num, T den, T max_num = MAX_NUM,
T max_den = MAX_DEN) const {
return Node::generate_node(num, den, max_num, max_den);
}
/*
* Get the root node of the tree
**/
constexpr auto get_root(T max_num = MAX_NUM, T max_den = MAX_DEN) const {
return Node::get_root(max_num, max_den);
}
};
} // namespace mtd#line 2 "Library/DataStructure/SternBrocotTree.hpp"
#include <iostream>
#include <numeric>
#include <ranges>
#include <stdexcept>
#include <tuple>
#include <vector>
namespace mtd {
template <class T, class CompT = long long>
class SternBrocotTree {
using Path = std::vector<std::tuple<bool, T>>;
static constexpr T MAX_NUM = static_cast<T>(2e18);
static constexpr T MAX_DEN = static_cast<T>(2e18);
class Node {
// 定数倍高速化のため破壊的変更や怪しい仕様あり
T num_l, den_l, num_r, den_r;
Path path_rle;
const T max_num;
const T max_den;
friend std::ostream& operator<<(std::ostream& os, const Node& node) {
return os << node.num_l + node.num_r << "/" << node.den_l + node.den_r
<< ": " << node.num_l << "/" << node.den_l << " "
<< node.num_r << "/" << node.den_r;
}
public:
static constexpr auto get_root(T max_num, T max_den) {
return Node(0, 1, 1, 0, Path(), max_num, max_den);
}
constexpr auto get() const {
return std::make_tuple(num_l + num_r, den_l + den_r);
}
constexpr auto get_l() const { return Node(num_l, den_l); }
constexpr auto get_r() const { return Node(num_r, den_r); }
constexpr auto get_path_rle() const { return path_rle; }
constexpr auto move_left(T d = 1) {
if (num_l > 0) { d = std::min(d, (max_num - num_r - num_l) / num_l); }
if (den_l > 0) { d = std::min(d, (max_den - den_r - den_l) / den_l); }
if (d <= 0) { return false; }
path_rle.emplace_back(false, d);
num_r += d * num_l;
den_r += d * den_l;
return true;
}
constexpr auto move_left_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_l * num_d - den_d * num_l;
T d =
(den_d * (num_l + num_r) - (den_l + den_r) * num_d + tmp - 1) / tmp;
return move_left(d);
}
constexpr auto move_right(T d = 1) {
if (num_r > 0) { d = std::min(d, (max_num - num_l - num_r) / num_r); }
if (den_r > 0) { d = std::min(d, (max_den - den_l - den_r) / den_r); }
if (d <= 0) { return false; }
path_rle.emplace_back(true, d);
num_l += d * num_r;
den_l += d * den_r;
return true;
}
constexpr auto move_right_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_d * num_r - den_r * num_d;
T d =
((den_l + den_r) * num_d - den_d * (num_l + num_r) + tmp - 1) / tmp;
return move_right(d);
}
constexpr static auto generate_node(T num, T den, T max_num, T max_den) {
if (den <= 0) {
throw std::runtime_error("denominator must be positive");
}
if (num < 0) {
throw std::runtime_error("numerator must be non-negative");
}
if (std::gcd(num, den) > 1) {
throw std::runtime_error("numerator and denominator must be coprime");
}
auto node = get_root(max_num, max_den);
while (node.move_left_to(num, den) || node.move_right_to(num, den)) {}
return node;
}
constexpr static auto decode(const Path& path_rle, T max_num = MAX_NUM,
T max_den = MAX_DEN) {
auto node = get_root(max_num, max_den);
for (const auto& [right, k] : path_rle) {
right ? node.move_right(k) : node.move_left(k);
}
return node;
}
constexpr Node(T num_l, T den_l, T num_r, T den_r, Path&& path_rle,
T max_num, T max_den)
: num_l(num_l),
den_l(den_l),
num_r(num_r),
den_r(den_r),
path_rle(std::move(path_rle)),
max_num(max_num),
max_den(max_den) {}
constexpr Node(T num_l, T den_l, T num_r, T den_r)
: Node(num_l, den_l, num_r, den_r, Path(), MAX_NUM, MAX_DEN) {}
constexpr Node(T num, T den)
: Node(generate_node(num, den, MAX_NUM, MAX_DEN)) {}
constexpr auto operator!=(const Node& other) const {
return std::tie(num_l, den_l, num_r, den_r) !=
std::tie(other.num_l, other.den_l, other.num_r, other.den_r);
}
constexpr auto operator==(const Node& other) const {
return !(*this != other);
}
};
public:
/*
* Encode the path from the root to the fraction num/den
**/
constexpr auto encode(const Node& node) const {
return node.get_path_rle();
}
constexpr auto encode(T num, T den) const { return encode(Node(num, den)); }
/*
* Decode the path from the root to the fraction represented by
**/
constexpr auto decode(const Path& path_rle) const {
return Node::decode(path_rle);
}
/*
* Find the lowest common ancestor of two fractions num1/den1 and num2/den2
**/
constexpr auto lca(const Node& node1, const Node& node2) const {
auto path_rle1 = encode(node1);
auto path_rle2 = encode(node2);
Path lca_path;
for (const auto [p1, p2] : std::views::zip(path_rle1, path_rle2)) {
auto [right1, k1] = p1;
auto [right2, k2] = p2;
if (right1 != right2) { return Node::get_root(MAX_NUM, MAX_DEN); }
lca_path.emplace_back(right1, std::min(k1, k2));
if (p1 != p2) { break; }
}
return decode(lca_path);
}
constexpr auto lca(T num1, T den1, T num2, T den2) const {
return lca(Node(num1, den1), Node(num2, den2));
}
/*
* Find the k-th ancestor of the fraction num/den
**/
constexpr auto ancestor(const Node& node, T k) const {
Path k_path_rle;
for (const auto& [right, count] : encode(node)) {
if (count > k) {
k_path_rle.emplace_back(right, k);
k = 0;
break;
} else {
k_path_rle.emplace_back(right, count);
k -= count;
}
}
if (k > 0) { throw std::runtime_error("k is too large for the path"); }
return decode(k_path_rle);
}
constexpr auto ancestor(T num, T den, T k) const {
return ancestor(Node(num, den), k);
}
/*
* Find the lower and upper bounds of the descendants of num/den
**/
constexpr auto range(const Node& node) const {
auto [num, den] = node.get();
if (num == 1 && den == 1) {
return std::make_tuple(Node(0, 0, 0, 1), Node(0, 0, 1, 0));
}
if (den == 1) { return std::make_tuple(node.get_l(), Node(0, 0, 1, 0)); }
if (num == 1) { return std::make_tuple(Node(0, 0, 0, 1), node.get_r()); }
return std::make_tuple(node.get_l(), node.get_r());
}
constexpr auto range(T num, T den) const { return range(Node(num, den)); }
/*
* Create a node representing the fraction num/den
**/
constexpr auto create_node(T num, T den, T max_num = MAX_NUM,
T max_den = MAX_DEN) const {
return Node::generate_node(num, den, max_num, max_den);
}
/*
* Get the root node of the tree
**/
constexpr auto get_root(T max_num = MAX_NUM, T max_den = MAX_DEN) const {
return Node::get_root(max_num, max_den);
}
};
} // namespace mtd