This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/Graph/Flow/SuccessiveShortestPath.hpp"#pragma once
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "./../Graph.hpp"
namespace mtd {
template <class Node, class Cap, class Cost>
class SuccessiveShortestPath {
// using Node = int;
// using Cap = int;
// using Cost = int;
using GraphCap = std::vector<std::vector<Cap>>;
using GraphCost = std::vector<std::vector<Cost>>;
const Graph<Node, std::pair<Cap, Cost>> m_graph;
const Graph<Node, bool> m_graph_undirected;
auto construct_graph_undirected() const {
auto graph_undirected = Graph<Node, bool>(m_graph.size());
for (const auto& [f, t] : m_graph.getEdgesExcludeCost()) {
graph_undirected.addEdge(f, t);
}
return graph_undirected;
}
auto construct_graph_cap() const {
auto n = m_graph.size();
GraphCap graph_cap(n, std::vector<Cap>(n));
for (const auto& [f, t, cc] : m_graph.getEdges()) {
auto [cap, _] = cc;
graph_cap[f][t] += cap;
}
return graph_cap;
}
auto construct_graph_cost() const {
auto n = m_graph.size();
GraphCost graph_cost(n, std::vector<Cost>(n));
for (const auto& [f, t, cc] : m_graph.getEdges()) {
auto [_, cost] = cc;
graph_cost[f][t] = cost;
graph_cost[t][f] = -cost;
}
return graph_cost;
}
auto update_residual(Node s, Cap rem, GraphCap& residual_cap,
GraphCost& residual_cost,
const std::deque<Node>& route) const {
Cost mn = rem;
auto from = s;
for (const auto& to : route)
if (from != to) {
mn = std::min(mn, residual_cap[from][to]);
from = to;
}
Cost cost_all = 0;
from = s;
for (const auto& to : route)
if (from != to) {
residual_cap[from][to] -= mn;
residual_cap[to][from] += mn;
cost_all += mn * residual_cost[from][to];
from = to;
}
return std::pair<Cap, Cost>{mn, cost_all};
}
auto shortest_path_allow_minus(Node s, const GraphCap& residual_cap,
const GraphCost& residual_cost) const {
auto n = m_graph.size();
std::vector<Cost> cost(n, 1e18);
cost[s] = 0;
for (int _ = 0; _ < n; ++_) {
for (int from = 0; from < n; ++from) {
for (const auto& [to, __] : m_graph_undirected.getEdges(from)) {
if (residual_cap[from][to] > 0) {
cost[to] =
std::min(cost[to], cost[from] + residual_cost[from][to]);
}
}
}
}
return cost;
}
auto shortest_path(Node s, const GraphCap& residual_cap,
const GraphCost& residual_cost,
const std::vector<Cost>& p) const {
using P = std::pair<Cost, Node>;
std::priority_queue<P, std::vector<P>, std::greater<P>> q;
std::vector<std::pair<Cost, Node>> min(m_graph.size(), {1e18, -1});
auto add = [&](Node node, Cost cst, Node from) {
if (cst >= min[node].first) { return; }
min[node].first = cst;
min[node].second = from;
q.emplace(cst, node);
};
add(s, 0, -1);
while (!q.empty()) {
auto [nowCost, from] = q.top();
q.pop();
if (min[from].first < nowCost) { continue; }
for (const auto& [to, _] : m_graph_undirected.getEdges(from)) {
if (residual_cap[from][to] == 0) { continue; }
auto potential = residual_cost[from][to] + p[from] - p[to];
add(to, nowCost + potential, from);
}
}
return min;
}
static auto restore_route(int t,
const std::vector<std::pair<Cost, Node>>& sp) {
std::deque<Node> route;
auto now = t;
while (now > -1) {
route.emplace_front(now);
now = sp[now].second;
}
return route;
}
public:
/* 単純グラフを仮定 */
SuccessiveShortestPath(const Graph<Node, std::pair<Cost, Cap>>& graph)
: m_graph(graph), m_graph_undirected(construct_graph_undirected()) {}
auto slope(Node s, Node t, Cap c = 1e18) const {
auto residual_cap = construct_graph_cap();
auto residual_cost = construct_graph_cost();
auto default_cost = residual_cost;
std::deque<std::pair<Cost, Cap>> sl;
auto p = shortest_path_allow_minus(s, residual_cap, residual_cost);
auto rem = c;
while (rem > 0) {
auto sp = shortest_path(s, residual_cap, default_cost, p);
auto route = restore_route(t, sp);
auto [use, cst] =
update_residual(s, rem, residual_cap, residual_cost, route);
if (use == 0) { break; }
sl.emplace_back(use, cst);
rem -= use;
for (int i = 0; i < m_graph.size(); ++i) { p[i] += sp[i].first; }
}
return sl;
}
auto min_cost_max_flow(Node s, Node t, Cap cap = 1e18) const {
Cap use_all = 0;
Cost cost_all = 0;
for (const auto& [u, c] : slope(s, t, cap)) {
use_all += u;
cost_all += c;
}
return std::pair<Cap, Cost>{use_all, cost_all};
}
};
} // namespace mtd#line 2 "Library/Graph/Flow/SuccessiveShortestPath.hpp"
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#line 4 "Library/Graph/Graph.hpp"
#include <ranges>
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 12 "Library/Graph/Flow/SuccessiveShortestPath.hpp"
namespace mtd {
template <class Node, class Cap, class Cost>
class SuccessiveShortestPath {
// using Node = int;
// using Cap = int;
// using Cost = int;
using GraphCap = std::vector<std::vector<Cap>>;
using GraphCost = std::vector<std::vector<Cost>>;
const Graph<Node, std::pair<Cap, Cost>> m_graph;
const Graph<Node, bool> m_graph_undirected;
auto construct_graph_undirected() const {
auto graph_undirected = Graph<Node, bool>(m_graph.size());
for (const auto& [f, t] : m_graph.getEdgesExcludeCost()) {
graph_undirected.addEdge(f, t);
}
return graph_undirected;
}
auto construct_graph_cap() const {
auto n = m_graph.size();
GraphCap graph_cap(n, std::vector<Cap>(n));
for (const auto& [f, t, cc] : m_graph.getEdges()) {
auto [cap, _] = cc;
graph_cap[f][t] += cap;
}
return graph_cap;
}
auto construct_graph_cost() const {
auto n = m_graph.size();
GraphCost graph_cost(n, std::vector<Cost>(n));
for (const auto& [f, t, cc] : m_graph.getEdges()) {
auto [_, cost] = cc;
graph_cost[f][t] = cost;
graph_cost[t][f] = -cost;
}
return graph_cost;
}
auto update_residual(Node s, Cap rem, GraphCap& residual_cap,
GraphCost& residual_cost,
const std::deque<Node>& route) const {
Cost mn = rem;
auto from = s;
for (const auto& to : route)
if (from != to) {
mn = std::min(mn, residual_cap[from][to]);
from = to;
}
Cost cost_all = 0;
from = s;
for (const auto& to : route)
if (from != to) {
residual_cap[from][to] -= mn;
residual_cap[to][from] += mn;
cost_all += mn * residual_cost[from][to];
from = to;
}
return std::pair<Cap, Cost>{mn, cost_all};
}
auto shortest_path_allow_minus(Node s, const GraphCap& residual_cap,
const GraphCost& residual_cost) const {
auto n = m_graph.size();
std::vector<Cost> cost(n, 1e18);
cost[s] = 0;
for (int _ = 0; _ < n; ++_) {
for (int from = 0; from < n; ++from) {
for (const auto& [to, __] : m_graph_undirected.getEdges(from)) {
if (residual_cap[from][to] > 0) {
cost[to] =
std::min(cost[to], cost[from] + residual_cost[from][to]);
}
}
}
}
return cost;
}
auto shortest_path(Node s, const GraphCap& residual_cap,
const GraphCost& residual_cost,
const std::vector<Cost>& p) const {
using P = std::pair<Cost, Node>;
std::priority_queue<P, std::vector<P>, std::greater<P>> q;
std::vector<std::pair<Cost, Node>> min(m_graph.size(), {1e18, -1});
auto add = [&](Node node, Cost cst, Node from) {
if (cst >= min[node].first) { return; }
min[node].first = cst;
min[node].second = from;
q.emplace(cst, node);
};
add(s, 0, -1);
while (!q.empty()) {
auto [nowCost, from] = q.top();
q.pop();
if (min[from].first < nowCost) { continue; }
for (const auto& [to, _] : m_graph_undirected.getEdges(from)) {
if (residual_cap[from][to] == 0) { continue; }
auto potential = residual_cost[from][to] + p[from] - p[to];
add(to, nowCost + potential, from);
}
}
return min;
}
static auto restore_route(int t,
const std::vector<std::pair<Cost, Node>>& sp) {
std::deque<Node> route;
auto now = t;
while (now > -1) {
route.emplace_front(now);
now = sp[now].second;
}
return route;
}
public:
/* 単純グラフを仮定 */
SuccessiveShortestPath(const Graph<Node, std::pair<Cost, Cap>>& graph)
: m_graph(graph), m_graph_undirected(construct_graph_undirected()) {}
auto slope(Node s, Node t, Cap c = 1e18) const {
auto residual_cap = construct_graph_cap();
auto residual_cost = construct_graph_cost();
auto default_cost = residual_cost;
std::deque<std::pair<Cost, Cap>> sl;
auto p = shortest_path_allow_minus(s, residual_cap, residual_cost);
auto rem = c;
while (rem > 0) {
auto sp = shortest_path(s, residual_cap, default_cost, p);
auto route = restore_route(t, sp);
auto [use, cst] =
update_residual(s, rem, residual_cap, residual_cost, route);
if (use == 0) { break; }
sl.emplace_back(use, cst);
rem -= use;
for (int i = 0; i < m_graph.size(); ++i) { p[i] += sp[i].first; }
}
return sl;
}
auto min_cost_max_flow(Node s, Node t, Cap cap = 1e18) const {
Cap use_all = 0;
Cost cost_all = 0;
for (const auto& [u, c] : slope(s, t, cap)) {
use_all += u;
cost_all += c;
}
return std::pair<Cap, Cost>{use_all, cost_all};
}
};
} // namespace mtd