This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/Graph/Normal/StronglyConnectedComponents.hpp"#pragma once
#include <algorithm>
#include <concepts>
#include <ranges>
#include <set>
#include <unordered_set>
#include <vector>
#include "./../Graph.hpp"
namespace mtd {
template <class Node, class Cost>
class StronglyConnectedComponents {
struct HashPair {
template <class T1, class T2>
size_t operator()(const std::pair<T1, T2>& p) const {
auto hash1 = std::hash<T1>{}(p.first);
auto hash2 = std::hash<T2>{}(p.second);
size_t seed = 0;
seed ^= hash1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= hash2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
const Graph<Node, Cost> m_graph;
const std::vector<Node> m_group;
template <class F>
constexpr static inline auto dfs(const Graph<Node, Cost>& graph, Node from,
std::vector<bool>& is_used, const F& f)
-> void {
is_used[from] = true;
for (const auto& [to, _] : graph.getEdges(from)) {
if (is_used[to]) { continue; }
dfs(graph, to, is_used, f);
}
f(from);
}
constexpr static auto constructGroup(const Graph<Node, Cost>& graph) {
int n = graph.size();
std::vector<Node> order;
std::vector<bool> is_used(n);
for (auto from : std::views::iota(0, n)) {
if (is_used[from]) { continue; }
dfs(graph, from, is_used, [&](auto f) { order.emplace_back(f); });
}
int g = 0;
std::vector<Node> group(n);
std::vector<bool> is_used2(n);
auto rev = graph.reverse();
for (auto from : order | std::views::reverse) {
if (is_used2[from]) { continue; }
dfs(rev, from, is_used2, [&](auto f) { group[f] = g; });
++g;
}
return group;
}
public:
[[deprecated]] constexpr StronglyConnectedComponents(
const Graph<Node, Cost>& graph)
: m_graph(graph), m_group(constructGroup(m_graph)) {}
// graphのコピーコストが大きいのでこっち推奨
constexpr StronglyConnectedComponents(Graph<Node, Cost>&& graph)
: m_graph(std::move(graph)), m_group(constructGroup(m_graph)) {}
constexpr auto size() const {
return *std::max_element(m_group.begin(), m_group.end()) + 1;
}
constexpr auto group(Node a) const { return m_group[a]; }
constexpr auto isSameGroup(Node a, Node b) const {
return m_group[a] == m_group[b];
}
constexpr auto getGroupNodes() const {
std::vector<std::vector<Node>> groupNodes(size());
for (int gi = 0; gi < m_graph.size(); ++gi) {
groupNodes[m_group[gi]].emplace_back(gi);
}
return groupNodes;
}
constexpr auto getGroupGraph() const {
std::unordered_set<std::pair<Node, Node>, HashPair> st;
st.reserve(m_graph.size());
for (int f = 0; f < m_graph.size(); ++f) {
for (const auto& [t, _] : m_graph.getEdges(f)) {
if (!isSameGroup(f, t)) { st.emplace(m_group[f], m_group[t]); }
}
}
Graph<Node, Cost> ret(size());
for (const auto& [f, t] : st) { ret.addArc(f, t); }
return ret;
}
};
} // namespace mtd#line 2 "Library/Graph/Normal/StronglyConnectedComponents.hpp"
#include <algorithm>
#include <concepts>
#include <ranges>
#include <set>
#include <unordered_set>
#include <vector>
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#include <iostream>
#line 5 "Library/Graph/Graph.hpp"
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 11 "Library/Graph/Normal/StronglyConnectedComponents.hpp"
namespace mtd {
template <class Node, class Cost>
class StronglyConnectedComponents {
struct HashPair {
template <class T1, class T2>
size_t operator()(const std::pair<T1, T2>& p) const {
auto hash1 = std::hash<T1>{}(p.first);
auto hash2 = std::hash<T2>{}(p.second);
size_t seed = 0;
seed ^= hash1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= hash2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
const Graph<Node, Cost> m_graph;
const std::vector<Node> m_group;
template <class F>
constexpr static inline auto dfs(const Graph<Node, Cost>& graph, Node from,
std::vector<bool>& is_used, const F& f)
-> void {
is_used[from] = true;
for (const auto& [to, _] : graph.getEdges(from)) {
if (is_used[to]) { continue; }
dfs(graph, to, is_used, f);
}
f(from);
}
constexpr static auto constructGroup(const Graph<Node, Cost>& graph) {
int n = graph.size();
std::vector<Node> order;
std::vector<bool> is_used(n);
for (auto from : std::views::iota(0, n)) {
if (is_used[from]) { continue; }
dfs(graph, from, is_used, [&](auto f) { order.emplace_back(f); });
}
int g = 0;
std::vector<Node> group(n);
std::vector<bool> is_used2(n);
auto rev = graph.reverse();
for (auto from : order | std::views::reverse) {
if (is_used2[from]) { continue; }
dfs(rev, from, is_used2, [&](auto f) { group[f] = g; });
++g;
}
return group;
}
public:
[[deprecated]] constexpr StronglyConnectedComponents(
const Graph<Node, Cost>& graph)
: m_graph(graph), m_group(constructGroup(m_graph)) {}
// graphのコピーコストが大きいのでこっち推奨
constexpr StronglyConnectedComponents(Graph<Node, Cost>&& graph)
: m_graph(std::move(graph)), m_group(constructGroup(m_graph)) {}
constexpr auto size() const {
return *std::max_element(m_group.begin(), m_group.end()) + 1;
}
constexpr auto group(Node a) const { return m_group[a]; }
constexpr auto isSameGroup(Node a, Node b) const {
return m_group[a] == m_group[b];
}
constexpr auto getGroupNodes() const {
std::vector<std::vector<Node>> groupNodes(size());
for (int gi = 0; gi < m_graph.size(); ++gi) {
groupNodes[m_group[gi]].emplace_back(gi);
}
return groupNodes;
}
constexpr auto getGroupGraph() const {
std::unordered_set<std::pair<Node, Node>, HashPair> st;
st.reserve(m_graph.size());
for (int f = 0; f < m_graph.size(); ++f) {
for (const auto& [t, _] : m_graph.getEdges(f)) {
if (!isSameGroup(f, t)) { st.emplace(m_group[f], m_group[t]); }
}
}
Graph<Node, Cost> ret(size());
for (const auto& [f, t] : st) { ret.addArc(f, t); }
return ret;
}
};
} // namespace mtd