This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/Graph/Tree/EulerTour.hpp"#pragma once
#include <stack>
#include <vector>
#include "../Graph.hpp"
namespace mtd {
template <class Node, class Cost>
class EulerTour {
const std::vector<Node> m_tour;
const std::vector<std::pair<int, int>> m_appear;
auto constructTour(const Graph<Node, Cost>& tree, Node root) const {
auto n = tree.size();
std::vector<Node> tour;
std::stack<Node> stk;
std::vector<int> used(n);
stk.emplace(root);
while (!stk.empty()) {
auto from = stk.top();
tour.emplace_back(from);
stk.pop();
if (used[from]) { continue; }
stk.emplace(from);
used[from] = true;
for (auto [to, _] : tree.getEdges(from)) {
if (!used[to]) { stk.emplace(to); }
}
}
return tour;
}
auto constructAppear(int n) const {
std::vector<std::pair<int, int>> appear(n, {-1, -1});
for (int i = 0; i < 2 * n; ++i) {
if (appear[m_tour[i]].first == -1) {
appear[m_tour[i]].first = i;
} else {
appear[m_tour[i]].second = i;
}
}
return appear;
}
public:
EulerTour(const Graph<Node, Cost>& tree, Node root = 0)
: m_tour(constructTour(tree, root)),
m_appear(constructAppear(tree.size())) {}
auto lessOrder(int li, int ri) const {
return m_appear[li].first < m_appear[ri].first;
}
auto isSon(Node son, Node parent) {
return m_appear[parent].first < m_appear[son].first &&
m_appear[son].second < m_appear[parent].second;
}
auto range(Node u) const { return m_appear[u]; }
};
} // namespace mtd#line 2 "Library/Graph/Tree/EulerTour.hpp"
#include <stack>
#include <vector>
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#include <iostream>
#include <ranges>
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 7 "Library/Graph/Tree/EulerTour.hpp"
namespace mtd {
template <class Node, class Cost>
class EulerTour {
const std::vector<Node> m_tour;
const std::vector<std::pair<int, int>> m_appear;
auto constructTour(const Graph<Node, Cost>& tree, Node root) const {
auto n = tree.size();
std::vector<Node> tour;
std::stack<Node> stk;
std::vector<int> used(n);
stk.emplace(root);
while (!stk.empty()) {
auto from = stk.top();
tour.emplace_back(from);
stk.pop();
if (used[from]) { continue; }
stk.emplace(from);
used[from] = true;
for (auto [to, _] : tree.getEdges(from)) {
if (!used[to]) { stk.emplace(to); }
}
}
return tour;
}
auto constructAppear(int n) const {
std::vector<std::pair<int, int>> appear(n, {-1, -1});
for (int i = 0; i < 2 * n; ++i) {
if (appear[m_tour[i]].first == -1) {
appear[m_tour[i]].first = i;
} else {
appear[m_tour[i]].second = i;
}
}
return appear;
}
public:
EulerTour(const Graph<Node, Cost>& tree, Node root = 0)
: m_tour(constructTour(tree, root)),
m_appear(constructAppear(tree.size())) {}
auto lessOrder(int li, int ri) const {
return m_appear[li].first < m_appear[ri].first;
}
auto isSon(Node son, Node parent) {
return m_appear[parent].first < m_appear[son].first &&
m_appear[son].second < m_appear[parent].second;
}
auto range(Node u) const { return m_appear[u]; }
};
} // namespace mtd