This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/Graph/Tree/ReRootingDP.hpp"#pragma once
#include <unordered_map>
#include <vector>
#include "../../Algebraic/Monoid.hpp"
#include "../../Graph/Normal/BFS.hpp"
#include "../../Graph/Tree/TreeDP.hpp"
namespace mtd {
/*
* Monoid: 部分木の情報
* edge_f: 辺の情報を親に流す関数: (M, f, t, c) -> M
* node_f: 子の情報を親に流す関数: (M, i) -> M
*/
template <monoid Monoid, class Node, class Cost, class Lambda1, class Lambda2>
auto reRootingDP(const Graph<Node, Cost>& graph, const Lambda1& edge_f,
const Lambda2& node_f) {
constexpr int root = 0;
auto n = graph.size();
// <辺情報を考慮したMonoidの2項演算>
auto merge = [&](Monoid& m1, const Monoid& m2, Node f = -1, Node t = -1,
const Cost& c = Cost()) {
m1 = m1.binaryOperation((f == -1 || t == -1) ? m2 : edge_f(m2, f, t, c));
};
// <node:toを根とした木で全てマージした解を求める>
std::vector<std::vector<std::tuple<Monoid, Node, Cost>>> partial(n);
auto all_merge = [&](Node to) {
Monoid val{};
for (const auto& [ad, from, cost] : partial[to]) {
merge(val, ad, from, to, cost);
}
return node_f(val, to);
};
// <node:toを根とした木でfrom以外マージした解を求める>
std::vector<std::unordered_map<Node, Monoid>> partial_ac(n);
std::vector<Monoid> ret_m(n);
auto accumulation = [&](Node to) {
// 左からマージ
Monoid val_ord{};
for (const auto& [ad, from, cost] : partial[to]) {
partial_ac[to].emplace(from, val_ord);
merge(val_ord, ad, from, to, cost);
}
// 右からマージ
Monoid val_rord{};
for (auto rit = partial[to].rbegin(); rit != partial[to].rend(); ++rit) {
auto [ad, from, cost] = *rit;
merge(partial_ac[to][from], val_rord, cost);
merge(val_rord, ad, from, to, cost);
}
// node情報を反映させて値を確定
ret_m[to] = node_f(val_ord, to);
for (auto&& [_, pac] : partial_ac[to]) { pac = node_f(pac, to); }
};
// rootを根とした解を求める
treeDP(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(all_merge(f), f, c);
});
accumulation(0);
// rootからbfsして各nodeを根とした解を求める
bfs(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(partial_ac[f][t], f, c);
accumulation(t);
});
std::vector<typename Monoid::value_type> ret;
for (const auto x : ret_m) { ret.emplace_back(x.m_val); }
return ret;
}
} // namespace mtd#line 2 "Library/Graph/Tree/ReRootingDP.hpp"
#include <unordered_map>
#include <vector>
#line 2 "Library/Algebraic/Monoid.hpp"
#include <iostream>
namespace mtd {
template <class S, // set
S element, // identity element
class op // binary operation
>
requires std::is_invocable_r_v<S, op, S, S>
struct Monoid {
using value_type = S;
constexpr static S _element = element;
using op_type = op;
S m_val;
constexpr Monoid(S val) : m_val(val) {}
constexpr Monoid() : Monoid(element) {}
constexpr Monoid binaryOperation(const Monoid& m2) const {
return op()(m_val, m2.m_val);
}
friend std::ostream& operator<<(std::ostream& os,
const Monoid<S, element, op>& m) {
return os << m.m_val;
}
};
namespace __detail {
template <typename T, template <typename, auto, typename> typename S>
concept is_monoid_specialization_of = requires {
typename std::enable_if_t<std::is_same_v<
T, S<typename T::value_type, T::_element, typename T::op_type>>>;
};
} // namespace __detail
template <typename M>
concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;
} // namespace mtd
#line 2 "Library/Graph/Normal/BFS.hpp"
#include <concepts>
#include <queue>
#line 6 "Library/Graph/Normal/BFS.hpp"
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#line 4 "Library/Graph/Graph.hpp"
#include <ranges>
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 8 "Library/Graph/Normal/BFS.hpp"
namespace mtd {
template <class Node, class Cost, class Lambda,
std::convertible_to<Node> _Node>
auto bfs(const Graph<Node, Cost>& graph, const _Node& root,
const Lambda& lambda) {
auto n = graph.size();
std::vector<bool> used(n);
used[root] = true;
std::queue<Node> q;
q.emplace(root);
while (!q.empty()) {
auto from = q.front();
q.pop();
for (const auto& [to, cost] : graph.getEdges(from)) {
if (used[to]) { continue; }
q.emplace(to);
used[to] = true;
lambda(from, to, cost);
}
}
}
} // namespace mtd
#line 2 "Library/Graph/Tree/TreeDP.hpp"
#line 6 "Library/Graph/Tree/TreeDP.hpp"
#line 8 "Library/Graph/Tree/TreeDP.hpp"
namespace mtd {
template <class Node, class Cost, class Lambda,
std::convertible_to<Node> _Node>
auto treeDP(const Graph<Node, Cost>& tree, _Node root, const Lambda& lambda) {
auto n = tree.size();
std::vector<Node> in(n);
for (const auto& [f, t] : tree.getEdgesExcludeCost())
if (f < t) {
++in[f];
++in[t];
}
std::queue<Node> q;
std::vector<bool> used(n);
for (Node i = 0; i < n; ++i)
if (i != root && in[i] == 1) { q.emplace(i); }
while (!q.empty()) {
auto from = q.front();
q.pop();
used[from] = true;
for (const auto& [to, cost] : tree.getEdges(from)) {
if (used[to]) { continue; }
lambda(from, to, cost);
--in[to];
if (to != root && in[to] == 1) { q.emplace(to); }
}
}
}
} // namespace mtd
#line 8 "Library/Graph/Tree/ReRootingDP.hpp"
namespace mtd {
/*
* Monoid: 部分木の情報
* edge_f: 辺の情報を親に流す関数: (M, f, t, c) -> M
* node_f: 子の情報を親に流す関数: (M, i) -> M
*/
template <monoid Monoid, class Node, class Cost, class Lambda1, class Lambda2>
auto reRootingDP(const Graph<Node, Cost>& graph, const Lambda1& edge_f,
const Lambda2& node_f) {
constexpr int root = 0;
auto n = graph.size();
// <辺情報を考慮したMonoidの2項演算>
auto merge = [&](Monoid& m1, const Monoid& m2, Node f = -1, Node t = -1,
const Cost& c = Cost()) {
m1 = m1.binaryOperation((f == -1 || t == -1) ? m2 : edge_f(m2, f, t, c));
};
// <node:toを根とした木で全てマージした解を求める>
std::vector<std::vector<std::tuple<Monoid, Node, Cost>>> partial(n);
auto all_merge = [&](Node to) {
Monoid val{};
for (const auto& [ad, from, cost] : partial[to]) {
merge(val, ad, from, to, cost);
}
return node_f(val, to);
};
// <node:toを根とした木でfrom以外マージした解を求める>
std::vector<std::unordered_map<Node, Monoid>> partial_ac(n);
std::vector<Monoid> ret_m(n);
auto accumulation = [&](Node to) {
// 左からマージ
Monoid val_ord{};
for (const auto& [ad, from, cost] : partial[to]) {
partial_ac[to].emplace(from, val_ord);
merge(val_ord, ad, from, to, cost);
}
// 右からマージ
Monoid val_rord{};
for (auto rit = partial[to].rbegin(); rit != partial[to].rend(); ++rit) {
auto [ad, from, cost] = *rit;
merge(partial_ac[to][from], val_rord, cost);
merge(val_rord, ad, from, to, cost);
}
// node情報を反映させて値を確定
ret_m[to] = node_f(val_ord, to);
for (auto&& [_, pac] : partial_ac[to]) { pac = node_f(pac, to); }
};
// rootを根とした解を求める
treeDP(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(all_merge(f), f, c);
});
accumulation(0);
// rootからbfsして各nodeを根とした解を求める
bfs(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(partial_ac[f][t], f, c);
accumulation(t);
});
std::vector<typename Monoid::value_type> ret;
for (const auto x : ret_m) { ret.emplace_back(x.m_val); }
return ret;
}
} // namespace mtd