CompetitiveProgrammingCpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub

:heavy_check_mark: Test/DataStructure/LazySegmentTree_RUQRSQ.test.cpp

Depends on

Code

#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I"

#include <iostream>


// begin:tag includes

#include "./../../Library/DataStructure/LazySegmentTree.hpp"

// end:tag includes


using ll = long long;

signed main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  int n, q;
  std::cin >> n >> q;

  std::vector<std::pair<long long, long long>> v(n, {0, 1});
  auto segtree = mtd::LazySegmentTree<mtd::type::M_SUM, mtd::type::M_UP,
                                      mtd::type::OP_SUM_UP>(n, v);

  for (int _ = 0; _ < q; ++_) {
    int k;
    std::cin >> k;
    if (k == 0) {
      int s, t, x;
      std::cin >> s >> t >> x;
      segtree.update(s, t, x);
    } else {
      int s, t;
      std::cin >> s >> t;
      std::cout << segtree.query(s, t).first << std::endl;
    }
  }
}
#line 1 "Test/DataStructure/LazySegmentTree_RUQRSQ.test.cpp"
#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I"

#include <iostream>


// begin:tag includes

#line 2 "Library/DataStructure/LazySegmentTree.hpp"

#include <deque>

#line 5 "Library/DataStructure/LazySegmentTree.hpp"
#include <utility>

#include <vector>


#line 2 "Library/Algebraic/Monoid.hpp"

#line 4 "Library/Algebraic/Monoid.hpp"

namespace mtd {

  template <class S,    // set
            S element,  // identity element
            class op    // binary operation
            >
  requires std::is_invocable_r_v<S, op, S, S>
  struct Monoid {
    using value_type = S;
    constexpr static S _element = element;
    using op_type = op;

    S m_val;
    constexpr Monoid(S val) : m_val(val) {}
    constexpr Monoid() : Monoid(element) {}
    constexpr Monoid binaryOperation(const Monoid& m2) const {
      return op()(m_val, m2.m_val);
    }
    friend std::ostream& operator<<(std::ostream& os,
                                    const Monoid<S, element, op>& m) {
      return os << m.m_val;
    }
  };

  namespace __detail {
    template <typename T, template <typename, auto, typename> typename S>
    concept is_monoid_specialization_of = requires {
      typename std::enable_if_t<std::is_same_v<
          T, S<typename T::value_type, T::_element, typename T::op_type>>>;
    };
  }  // namespace __detail

  template <typename M>
  concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;

}  // namespace mtd
#line 9 "Library/DataStructure/LazySegmentTree.hpp"

namespace mtd {
  template <monoid Monoid, monoid MonoidOp, class op>
  class LazySegmentTree {
  private:
    const int m_size;
    std::vector<Monoid> m_node;
    std::vector<MonoidOp> m_lazy;
    using S = decltype(Monoid().m_val);

    constexpr int calcSize(int n) const {
      int size = 1;
      while (size < n) { size <<= 1; }
      return size;
    }

    constexpr auto _lazy_update(int i, const MonoidOp& val) {
      if (i >= (m_size << 1) - 1) { return; }
      m_lazy[i] = m_lazy[i].binaryOperation(val);
    }

    constexpr auto _propagate(int i) {
      m_node[i] = op()(m_node[i], m_lazy[i]);
      _lazy_update((i << 1) + 1, m_lazy[i]);
      _lazy_update((i << 1) + 2, m_lazy[i]);
      m_lazy[i] = MonoidOp();
    }

    constexpr auto _update(int l, int r, int k, int nl, int nr,
                           const MonoidOp& m) {
      _propagate(k);
      if (nr < l || r < nl) { return; }
      if (l <= nl && nr <= r) {
        _lazy_update(k, m);
        _propagate(k);
        return;
      }
      _update(l, r, (k << 1) + 1, nl, (nl + nr) >> 1, m);
      _update(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr, m);
      m_node[k] = m_node[(k << 1) + 1].binaryOperation(m_node[(k << 1) + 2]);
    }

    constexpr auto _query(int l, int r, int k, int nl, int nr) {
      _propagate(k);
      if (nr < l || r < nl) { return Monoid(); }
      if (l <= nl && nr <= r) { return m_node[k]; }
      auto l_val = _query(l, r, (k << 1) + 1, nl, (nl + nr) >> 1);
      auto r_val = _query(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr);
      return l_val.binaryOperation(r_val);
    }

    constexpr auto _construct(const std::vector<S>& vec) {
      for (unsigned int i = 0; i < vec.size(); ++i) {
        m_node[i + m_size - 1] = Monoid(vec[i]);
      }
      for (int i = m_size - 2; i >= 0; --i) {
        m_node[i] =
            m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1LL]);
      }
    }

  public:
    constexpr LazySegmentTree(int n)
        : m_size(calcSize(n)),
          m_node((m_size << 1) - 1),
          m_lazy((m_size << 1) - 1) {}
    constexpr LazySegmentTree(int n, const std::vector<S>& vec)
        : LazySegmentTree(n) {
      _construct(vec);
    }

    constexpr auto update(int l, int r, const MonoidOp& val) {
      _update(l, r, 0, 0, m_size - 1, val);
    }

    constexpr auto query(int l, int r) {
      return _query(l, r, 0, 0, m_size - 1).m_val;
    }

    /*
     * f([l, r]) = true となる最大のr
     * judge: (Monoid) -> bool
     **/
    template <class F>
    constexpr auto max_right(int _l, const F& judge) {
      if (!judge(Monoid())) {
        throw std::runtime_error("SegmentTree.max_right.judge(e) must be true");
      }
      query(_l, m_size - 1);
      auto l = std::max(_l, 0) + m_size;
      auto r = 2 * m_size - 1;
      auto lm = Monoid();
      while (l <= r) {
        if (l & 1) {
          auto next = lm.binaryOperation(m_node[l - 1]);
          if (!judge(next)) {
            auto itr = l;
            while (itr < m_size) {
              auto litr = 2 * itr;
              auto ritr = 2 * itr + 1;
              _propagate(itr - 1);
              _propagate(litr - 1);
              auto lval = lm.binaryOperation(m_node[litr - 1]);
              if (!judge(lval)) {
                itr = litr;
              } else {
                itr = ritr;
                std::swap(lm, lval);
              }
            }
            return itr - m_size - 1;
          }
          std::swap(lm, next);
          ++l;
        }
        l >>= 1, r >>= 1;
      }
      return m_size - 1;
    }

    /*
     * f([l, r]) = true となる最小のl
     * judge: (Monoid) -> bool
     **/
    template <class F>
    constexpr auto min_left(int _r, const F& judge) {
      if (!judge(Monoid())) {
        throw std::runtime_error("SegmentTree.min_left.judge(e) must be true");
      }
      query(0, _r);
      auto l = m_size;
      auto r = std::min(_r, m_size - 1) + m_size;
      auto rm = Monoid();
      while (l <= r) {
        if (l & 1) { ++l; }
        if (!(r & 1) || (_r == m_size - 1 && r == 1)) {
          auto next = m_node[r - 1].binaryOperation(rm);
          if (!judge(next)) {
            auto itr = r;
            while (itr < m_size) {
              auto litr = 2 * itr;
              auto ritr = 2 * itr + 1;
              _propagate(itr - 1);
              _propagate(ritr - 1);
              auto rval = m_node[ritr - 1].binaryOperation(rm);
              if (!judge(rval)) {
                itr = ritr;
              } else {
                itr = litr;
                std::swap(rm, rval);
              }
            }
            return itr - m_size + 1;
          }
          std::swap(rm, next);
          --r;
        }
        l >>= 1, r >>= 1;
      }
      return 0;
    }

    constexpr auto debug() {
      for (int i = 0; i < (m_size << 1) - 1; ++i) { _propagate(i); }
      for (int i = 0; i < m_size; ++i) {
        std::cout << m_node[m_size + i - 1] << " ";
      }
      std::cout << std::endl;
    }
  };

  namespace type {
    /* 各種頻出サンプル */
    using P = std::pair<long long, long long>;
    constexpr long long update_element = -1e18;

    /*---- 要素 ----*/
    using M_SUM = Monoid<P, P{0, 0}, decltype([](const P& a, const P& b) {
                           return P{a.first + b.first, a.second + b.second};
                         })>;
    using M_MIN = Monoid<long long, static_cast<long long>(1e18),
                         decltype([](long long a, long long b) {
                           return std::min(a, b);
                         })>;
    using M_MAX = Monoid<long long, static_cast<long long>(-1e18),
                         decltype([](long long a, long long b) {
                           return std::max(a, b);
                         })>;
    /*---- 作用素 ----*/
    using M_UP = Monoid<long long, update_element,
                        decltype([](long long a, long long b) {
                          if (b == update_element) { return a; }
                          return b;
                        })>;
    using M_ADD =
        Monoid<long long, static_cast<long long>(0),
               decltype([](long long a, long long b) { return a + b; })>;

    /*---- 作用 ----*/
    using OP_SUM_UP = decltype([](const M_SUM& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_SUM(P{m.m_val.second * m2.m_val, m.m_val.second});
    });
    using OP_MIN_UP = decltype([](const M_MIN& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_MIN(m2.m_val);
    });
    using OP_MAX_UP = decltype([](const M_MAX& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_MAX(m2.m_val);
    });
    using OP_SUM_ADD = decltype([](const M_SUM& m, const M_ADD& m2) {
      return M_SUM(
          P{m.m_val.first + m.m_val.second * m2.m_val, m.m_val.second});
    });
    using OP_MIN_ADD = decltype([](const M_MIN& m, const M_ADD& m2) {
      return M_MIN{m.m_val + m2.m_val};
    });
    using OP_MAX_ADD = decltype([](const M_MAX& m, const M_ADD& m2) {
      return M_MAX{m.m_val + m2.m_val};
    });

  }  // namespace type

}  // namespace mtd

#line 8 "Test/DataStructure/LazySegmentTree_RUQRSQ.test.cpp"
// end:tag includes


using ll = long long;

signed main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  int n, q;
  std::cin >> n >> q;

  std::vector<std::pair<long long, long long>> v(n, {0, 1});
  auto segtree = mtd::LazySegmentTree<mtd::type::M_SUM, mtd::type::M_UP,
                                      mtd::type::OP_SUM_UP>(n, v);

  for (int _ = 0; _ < q; ++_) {
    int k;
    std::cin >> k;
    if (k == 0) {
      int s, t, x;
      std::cin >> s >> t >> x;
      segtree.update(s, t, x);
    } else {
      int s, t;
      std::cin >> s >> t;
      std::cout << segtree.query(s, t).first << std::endl;
    }
  }
}
Back to top page