This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/833"
#include <iostream>
#include <numeric>
#include <ranges>
#include <vector>
// begin:tag includes
#include "./../../Library/DataStructure/LazySegmentTree.hpp"
#include "./../../Library/DataStructure/SegmentTree.hpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n, q;
std::cin >> n >> q;
std::vector<ll> a(n);
for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; }
std::vector<ll> v(n);
std::iota(v.begin(), v.end(), 0);
auto segtree1 = mtd::LazySegmentTree<mtd::type::M_MIN, mtd::type::M_UP,
mtd::type::OP_MIN_UP>(n, v);
auto segtree2 = mtd::LazySegmentTree<mtd::type::M_MAX, mtd::type::M_UP,
mtd::type::OP_MAX_UP>(n, v);
auto range = [&](int i) {
auto val = segtree1.query(i, i);
auto judge_l = [&](const mtd::type::M_MIN& m) { return m.m_val >= val; };
auto judge_r = [&](const mtd::type::M_MAX& m) { return m.m_val <= val; };
auto l = segtree1.min_left(i, judge_l);
auto r = segtree2.max_right(i, judge_r);
return std::make_tuple(l, r);
};
for (auto i : std::views::iota(0, n)) { range(i); }
auto op = [](ll a, ll b) { return a + b; };
using M = mtd::Monoid<ll, 0LL, decltype(op)>;
auto segtree3 = mtd::SegmentTree<M>(n, a);
for ([[maybe_unused]] auto _ : std::views::iota(0, q)) {
int t, x;
std::cin >> t >> x;
--x;
if (t == 1) {
auto val = segtree1.query(x, x);
auto [l, r] = range(x + 1);
segtree1.update(l, r, val);
segtree2.update(l, r, val);
} else if (t == 2) {
auto [l, r] = range(x + 1);
segtree1.update(x + 1, r, x + 1);
segtree2.update(x + 1, r, x + 1);
} else if (t == 3) {
segtree3.add(x, 1);
} else {
auto [l, r] = range(x);
std::cout << segtree3.query(l, r) << std::endl;
}
}
}#line 1 "Test/DataStructure/LazySegmentTree_maxright.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/833"
#include <iostream>
#include <numeric>
#include <ranges>
#include <vector>
// begin:tag includes
#line 2 "Library/DataStructure/LazySegmentTree.hpp"
#include <deque>
#line 5 "Library/DataStructure/LazySegmentTree.hpp"
#include <utility>
#line 7 "Library/DataStructure/LazySegmentTree.hpp"
#line 2 "Library/Algebraic/Monoid.hpp"
#line 4 "Library/Algebraic/Monoid.hpp"
namespace mtd {
template <class S, // set
S element, // identity element
class op // binary operation
>
requires std::is_invocable_r_v<S, op, S, S>
struct Monoid {
using value_type = S;
constexpr static S _element = element;
using op_type = op;
S m_val;
constexpr Monoid(S val) : m_val(val) {}
constexpr Monoid() : Monoid(element) {}
constexpr Monoid binaryOperation(const Monoid& m2) const {
return op()(m_val, m2.m_val);
}
friend std::ostream& operator<<(std::ostream& os,
const Monoid<S, element, op>& m) {
return os << m.m_val;
}
};
namespace __detail {
template <typename T, template <typename, auto, typename> typename S>
concept is_monoid_specialization_of = requires {
typename std::enable_if_t<std::is_same_v<
T, S<typename T::value_type, T::_element, typename T::op_type>>>;
};
} // namespace __detail
template <typename M>
concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;
} // namespace mtd
#line 9 "Library/DataStructure/LazySegmentTree.hpp"
namespace mtd {
template <monoid Monoid, monoid MonoidOp, class op>
class LazySegmentTree {
private:
const int m_size;
std::vector<Monoid> m_node;
std::vector<MonoidOp> m_lazy;
using S = decltype(Monoid().m_val);
constexpr int calcSize(int n) const {
int size = 1;
while (size < n) { size <<= 1; }
return size;
}
constexpr auto _lazy_update(int i, const MonoidOp& val) {
if (i >= (m_size << 1) - 1) { return; }
m_lazy[i] = m_lazy[i].binaryOperation(val);
}
constexpr auto _propagate(int i) {
m_node[i] = op()(m_node[i], m_lazy[i]);
_lazy_update((i << 1) + 1, m_lazy[i]);
_lazy_update((i << 1) + 2, m_lazy[i]);
m_lazy[i] = MonoidOp();
}
constexpr auto _update(int l, int r, int k, int nl, int nr,
const MonoidOp& m) {
_propagate(k);
if (nr < l || r < nl) { return; }
if (l <= nl && nr <= r) {
_lazy_update(k, m);
_propagate(k);
return;
}
_update(l, r, (k << 1) + 1, nl, (nl + nr) >> 1, m);
_update(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr, m);
m_node[k] = m_node[(k << 1) + 1].binaryOperation(m_node[(k << 1) + 2]);
}
constexpr auto _query(int l, int r, int k, int nl, int nr) {
_propagate(k);
if (nr < l || r < nl) { return Monoid(); }
if (l <= nl && nr <= r) { return m_node[k]; }
auto l_val = _query(l, r, (k << 1) + 1, nl, (nl + nr) >> 1);
auto r_val = _query(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr);
return l_val.binaryOperation(r_val);
}
constexpr auto _construct(const std::vector<S>& vec) {
for (unsigned int i = 0; i < vec.size(); ++i) {
m_node[i + m_size - 1] = Monoid(vec[i]);
}
for (int i = m_size - 2; i >= 0; --i) {
m_node[i] =
m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1LL]);
}
}
public:
constexpr LazySegmentTree(int n)
: m_size(calcSize(n)),
m_node((m_size << 1) - 1),
m_lazy((m_size << 1) - 1) {}
constexpr LazySegmentTree(int n, const std::vector<S>& vec)
: LazySegmentTree(n) {
_construct(vec);
}
constexpr auto update(int l, int r, const MonoidOp& val) {
_update(l, r, 0, 0, m_size - 1, val);
}
constexpr auto query(int l, int r) {
return _query(l, r, 0, 0, m_size - 1).m_val;
}
/*
* f([l, r]) = true となる最大のr
* judge: (Monoid) -> bool
**/
template <class F>
constexpr auto max_right(int _l, const F& judge) {
if (!judge(Monoid())) {
throw std::runtime_error("SegmentTree.max_right.judge(e) must be true");
}
query(_l, m_size - 1);
auto l = std::max(_l, 0) + m_size;
auto r = 2 * m_size - 1;
auto lm = Monoid();
while (l <= r) {
if (l & 1) {
auto next = lm.binaryOperation(m_node[l - 1]);
if (!judge(next)) {
auto itr = l;
while (itr < m_size) {
auto litr = 2 * itr;
auto ritr = 2 * itr + 1;
_propagate(itr - 1);
_propagate(litr - 1);
auto lval = lm.binaryOperation(m_node[litr - 1]);
if (!judge(lval)) {
itr = litr;
} else {
itr = ritr;
std::swap(lm, lval);
}
}
return itr - m_size - 1;
}
std::swap(lm, next);
++l;
}
l >>= 1, r >>= 1;
}
return m_size - 1;
}
/*
* f([l, r]) = true となる最小のl
* judge: (Monoid) -> bool
**/
template <class F>
constexpr auto min_left(int _r, const F& judge) {
if (!judge(Monoid())) {
throw std::runtime_error("SegmentTree.min_left.judge(e) must be true");
}
query(0, _r);
auto l = m_size;
auto r = std::min(_r, m_size - 1) + m_size;
auto rm = Monoid();
while (l <= r) {
if (l & 1) { ++l; }
if (!(r & 1) || (_r == m_size - 1 && r == 1)) {
auto next = m_node[r - 1].binaryOperation(rm);
if (!judge(next)) {
auto itr = r;
while (itr < m_size) {
auto litr = 2 * itr;
auto ritr = 2 * itr + 1;
_propagate(itr - 1);
_propagate(ritr - 1);
auto rval = m_node[ritr - 1].binaryOperation(rm);
if (!judge(rval)) {
itr = ritr;
} else {
itr = litr;
std::swap(rm, rval);
}
}
return itr - m_size + 1;
}
std::swap(rm, next);
--r;
}
l >>= 1, r >>= 1;
}
return 0;
}
constexpr auto debug() {
for (int i = 0; i < (m_size << 1) - 1; ++i) { _propagate(i); }
for (int i = 0; i < m_size; ++i) {
std::cout << m_node[m_size + i - 1] << " ";
}
std::cout << std::endl;
}
};
namespace type {
/* 各種頻出サンプル */
using P = std::pair<long long, long long>;
constexpr long long update_element = -1e18;
/*---- 要素 ----*/
using M_SUM = Monoid<P, P{0, 0}, decltype([](const P& a, const P& b) {
return P{a.first + b.first, a.second + b.second};
})>;
using M_MIN = Monoid<long long, static_cast<long long>(1e18),
decltype([](long long a, long long b) {
return std::min(a, b);
})>;
using M_MAX = Monoid<long long, static_cast<long long>(-1e18),
decltype([](long long a, long long b) {
return std::max(a, b);
})>;
/*---- 作用素 ----*/
using M_UP = Monoid<long long, update_element,
decltype([](long long a, long long b) {
if (b == update_element) { return a; }
return b;
})>;
using M_ADD =
Monoid<long long, static_cast<long long>(0),
decltype([](long long a, long long b) { return a + b; })>;
/*---- 作用 ----*/
using OP_SUM_UP = decltype([](const M_SUM& m, const M_UP& m2) {
if (m2.m_val == update_element) { return m; }
return M_SUM(P{m.m_val.second * m2.m_val, m.m_val.second});
});
using OP_MIN_UP = decltype([](const M_MIN& m, const M_UP& m2) {
if (m2.m_val == update_element) { return m; }
return M_MIN(m2.m_val);
});
using OP_MAX_UP = decltype([](const M_MAX& m, const M_UP& m2) {
if (m2.m_val == update_element) { return m; }
return M_MAX(m2.m_val);
});
using OP_SUM_ADD = decltype([](const M_SUM& m, const M_ADD& m2) {
return M_SUM(
P{m.m_val.first + m.m_val.second * m2.m_val, m.m_val.second});
});
using OP_MIN_ADD = decltype([](const M_MIN& m, const M_ADD& m2) {
return M_MIN{m.m_val + m2.m_val};
});
using OP_MAX_ADD = decltype([](const M_MAX& m, const M_ADD& m2) {
return M_MAX{m.m_val + m2.m_val};
});
} // namespace type
} // namespace mtd
#line 2 "Library/DataStructure/SegmentTree.hpp"
#line 7 "Library/DataStructure/SegmentTree.hpp"
#line 9 "Library/DataStructure/SegmentTree.hpp"
namespace mtd {
template <monoid Monoid>
class SegmentTree {
private:
const int m_size;
std::vector<Monoid> m_node;
using S = decltype(Monoid().m_val);
constexpr int calcSize(int n) const {
int size = 1;
while (size < n) { size <<= 1; }
return size;
}
template <class Lambda>
constexpr auto _update_op(int itr, Monoid&& val, const Lambda& op) {
int i = itr + m_size - 1;
m_node[i] = op(m_node[i], std::forward<decltype(val)>(val));
while (i) {
i = (i - 1) >> 1;
m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]);
}
}
constexpr auto _query(int _l, int _r) const {
auto l = std::max(_l, 0) + m_size;
auto r = std::min(_r, m_size - 1) + m_size;
auto lm = Monoid();
auto rm = Monoid();
while (l <= r) {
if (l & 1) {
lm = lm.binaryOperation(m_node[l - 1]);
++l;
}
if (!(r & 1)) {
rm = m_node[r - 1].binaryOperation(rm);
--r;
}
l >>= 1, r >>= 1;
}
return lm.binaryOperation(rm);
}
constexpr auto _construct(const std::vector<S>& vec) {
for (unsigned int i = 0; i < vec.size(); ++i) {
m_node[i + m_size - 1] = Monoid(vec[i]);
}
for (int i = m_size - 2; i >= 0; --i) {
m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]);
}
}
public:
SegmentTree(int n) : m_size(calcSize(n)), m_node((m_size << 1) - 1) {}
SegmentTree(int n, const std::vector<S>& vec) : SegmentTree(n) {
_construct(vec);
}
template <class Lambda>
constexpr auto update_op(int itr, Monoid&& val, const Lambda& op) {
return _update_op(itr, std::forward<Monoid>(val), op);
}
constexpr auto update(int itr, Monoid&& val) {
return update_op(itr, std::forward<Monoid>(val),
[](const Monoid&, const Monoid& m2) { return m2; });
}
constexpr auto add(int itr, Monoid&& val) {
return update_op(itr, std::forward<Monoid>(val),
[](const Monoid& m1, const Monoid& m2) {
return Monoid(m1.m_val + m2.m_val);
});
}
constexpr auto query(int l, int r) const { return _query(l, r).m_val; }
constexpr auto query_all() const { return m_node[0].m_val; }
/*
* f([l, r]) = true となる最大のr
* judge: (Monoid) -> bool
**/
template <class F>
constexpr auto max_right(int _l, const F& judge) const {
if (!judge(Monoid())) {
throw std::runtime_error("SegmentTree.max_right.judge(e) must be true");
}
auto l = std::max(_l, 0) + m_size;
auto r = 2 * m_size - 1;
auto lm = Monoid();
while (l <= r) {
if (l & 1) {
auto next = lm.binaryOperation(m_node[l - 1]);
if (!judge(next)) {
auto itr = l;
while (itr < m_size) {
auto litr = 2 * itr;
auto ritr = 2 * itr + 1;
auto lval = lm.binaryOperation(m_node[litr - 1]);
if (!judge(lval)) {
itr = litr;
} else {
itr = ritr;
std::swap(lm, lval);
}
}
return itr - m_size - 1;
}
std::swap(lm, next);
++l;
}
l >>= 1, r >>= 1;
}
return m_size - 1;
}
/*
* f([l, r]) = true となる最小のl
* judge: (Monoid) -> bool
**/
template <class F>
constexpr auto min_left(int _r, const F& judge) const {
if (!judge(Monoid())) {
throw std::runtime_error("SegmentTree.min_left.judge(e) must be true");
}
auto l = m_size;
auto r = std::min(_r, m_size - 1) + m_size;
auto rm = Monoid();
while (l <= r) {
if (l & 1) { ++l; }
if (!(r & 1) || (_r == m_size - 1 && r == 1)) {
auto next = m_node[r - 1].binaryOperation(rm);
if (!judge(next)) {
auto itr = r;
while (itr < m_size) {
auto litr = 2 * itr;
auto ritr = 2 * itr + 1;
auto rval = m_node[ritr - 1].binaryOperation(rm);
if (!judge(rval)) {
itr = ritr;
} else {
itr = litr;
std::swap(rm, rval);
}
}
return itr - m_size + 1;
}
std::swap(rm, next);
--r;
}
l >>= 1, r >>= 1;
}
return 0;
}
constexpr auto debug() const {
for (int i = 0; i < m_size; ++i) {
std::cout << m_node[m_size + i - 1] << " ";
}
std::cout << std::endl;
}
};
} // namespace mtd
#line 11 "Test/DataStructure/LazySegmentTree_maxright.test.cpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n, q;
std::cin >> n >> q;
std::vector<ll> a(n);
for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; }
std::vector<ll> v(n);
std::iota(v.begin(), v.end(), 0);
auto segtree1 = mtd::LazySegmentTree<mtd::type::M_MIN, mtd::type::M_UP,
mtd::type::OP_MIN_UP>(n, v);
auto segtree2 = mtd::LazySegmentTree<mtd::type::M_MAX, mtd::type::M_UP,
mtd::type::OP_MAX_UP>(n, v);
auto range = [&](int i) {
auto val = segtree1.query(i, i);
auto judge_l = [&](const mtd::type::M_MIN& m) { return m.m_val >= val; };
auto judge_r = [&](const mtd::type::M_MAX& m) { return m.m_val <= val; };
auto l = segtree1.min_left(i, judge_l);
auto r = segtree2.max_right(i, judge_r);
return std::make_tuple(l, r);
};
for (auto i : std::views::iota(0, n)) { range(i); }
auto op = [](ll a, ll b) { return a + b; };
using M = mtd::Monoid<ll, 0LL, decltype(op)>;
auto segtree3 = mtd::SegmentTree<M>(n, a);
for ([[maybe_unused]] auto _ : std::views::iota(0, q)) {
int t, x;
std::cin >> t >> x;
--x;
if (t == 1) {
auto val = segtree1.query(x, x);
auto [l, r] = range(x + 1);
segtree1.update(l, r, val);
segtree2.update(l, r, val);
} else if (t == 2) {
auto [l, r] = range(x + 1);
segtree1.update(x + 1, r, x + 1);
segtree2.update(x + 1, r, x + 1);
} else if (t == 3) {
segtree3.add(x, 1);
} else {
auto [l, r] = range(x);
std::cout << segtree3.query(l, r) << std::endl;
}
}
}