This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/1473"
#include <iostream>
#include <vector>
// begin:tag includes
#include "./../../../Library/Algorithms/BinarySearch.hpp"
#include "./../../../Library/Graph/Graph.hpp"
#include "./../../../Library/Graph/Normal/BFS.hpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n, m;
std::cin >> n >> m;
auto graph_all = mtd::Graph(n);
for (int i = 0; i < m; ++i) {
int s, t, d;
std::cin >> s >> t >> d;
graph_all.addEdge(s - 1, t - 1, d);
}
auto solve = [&](int w) {
auto graph = mtd::Graph(n);
for (const auto& [s, t, d] : graph_all.getEdges()) {
if (w <= d) { graph.addArc(s, t); }
}
std::vector<int> dv(n);
bfs(graph, 0, [&](auto f, auto t, auto) { dv[t] = dv[f] + 1; });
return dv[n - 1];
};
auto w_max = mtd::binarySearch(0, static_cast<int>(1e9) + 1, [&](int w) {
auto d = solve(w);
return d > 0;
});
auto ans = solve(w_max);
std::cout << w_max << " " << ans << std::endl;
}#line 1 "Test/Graph/Normal/BFS.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1473"
#include <iostream>
#include <vector>
// begin:tag includes
#line 2 "Library/Algorithms/BinarySearch.hpp"
#include <concepts>
#include <numeric>
#include <ranges>
#include <type_traits>
namespace mtd {
template <class Lambda>
auto binarySearch(double ok, double ng, int rep, const Lambda& is_ok) {
for ([[maybe_unused]] auto _ : std::views::iota(0, rep)) {
double mid = (ok + ng) / 2.0;
(is_ok(mid) ? ok : ng) = mid;
}
return ok;
}
template <class Lambda, std::integral T1, std::integral T2>
auto binarySearch(T1 ok_, T2 ng_, const Lambda& is_ok) {
using T = std::common_type_t<T1, T2>;
T ok = ok_, ng = ng_;
while (std::abs(ok - ng) > 1) {
T mid = (ok + ng) >> 1;
(is_ok(mid) ? ok : ng) = mid;
}
return ok;
}
} // namespace mtd
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#line 5 "Library/Graph/Graph.hpp"
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 2 "Library/Graph/Normal/BFS.hpp"
#line 4 "Library/Graph/Normal/BFS.hpp"
#include <queue>
#line 6 "Library/Graph/Normal/BFS.hpp"
#line 8 "Library/Graph/Normal/BFS.hpp"
namespace mtd {
template <class Node, class Cost, class Lambda,
std::convertible_to<Node> _Node>
auto bfs(const Graph<Node, Cost>& graph, const _Node& root,
const Lambda& lambda) {
auto n = graph.size();
std::vector<bool> used(n);
used[root] = true;
std::queue<Node> q;
q.emplace(root);
while (!q.empty()) {
auto from = q.front();
q.pop();
for (const auto& [to, cost] : graph.getEdges(from)) {
if (used[to]) { continue; }
q.emplace(to);
used[to] = true;
lambda(from, to, cost);
}
}
}
} // namespace mtd
#line 10 "Test/Graph/Normal/BFS.test.cpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n, m;
std::cin >> n >> m;
auto graph_all = mtd::Graph(n);
for (int i = 0; i < m; ++i) {
int s, t, d;
std::cin >> s >> t >> d;
graph_all.addEdge(s - 1, t - 1, d);
}
auto solve = [&](int w) {
auto graph = mtd::Graph(n);
for (const auto& [s, t, d] : graph_all.getEdges()) {
if (w <= d) { graph.addArc(s, t); }
}
std::vector<int> dv(n);
bfs(graph, 0, [&](auto f, auto t, auto) { dv[t] = dv[f] + 1; });
return dv[n - 1];
};
auto w_max = mtd::binarySearch(0, static_cast<int>(1e9) + 1, [&](int w) {
auto d = solve(w);
return d > 0;
});
auto ans = solve(w_max);
std::cout << w_max << " " << ans << std::endl;
}