This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_A"
#include "./../../../Library/Graph/Normal/Kruskal.hpp"
#include <iostream>
#include "./../../../Library/Graph/Graph.hpp"
using ll = long long;
using std::cin;
using std::cout;
constexpr char endl = '\n';
signed main() {
int n, m;
cin >> n >> m;
auto graph = mtd::Graph(n);
for (int i = 0; i < m; ++i) {
int s, t, w;
cin >> s >> t >> w;
graph.addEdge(s, t, w);
}
auto min_spanning_tree = mtd::kruskal(graph);
ll ans = 0;
for (const auto& [f, t, c] : min_spanning_tree.getEdges()) {
if (f < t) { ans += c; }
}
cout << ans << endl;
}#line 1 "Test/Graph/Normal/Kruskal.test.cpp"
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_A"
#line 2 "Library/Graph/Normal/Kruskal.hpp"
#include <queue>
#line 2 "Library/DataStructure/DisjointSetUnion.hpp"
#include <iostream>
#include <numeric>
#include <vector>
namespace mtd {
template <class T = int>
class PotentialDisjointSetUnion {
std::vector<int> m_root;
std::vector<int> m_rank;
std::vector<int> m_size;
std::vector<T> m_potential;
public:
PotentialDisjointSetUnion() = delete;
PotentialDisjointSetUnion(int n)
: m_root(n), m_rank(n), m_size(n, 1), m_potential(n) {
std::iota(m_root.begin(), m_root.end(), 0);
}
auto unite(int x, int y, T p = 0) {
p += potential(x);
p -= potential(y);
x = root(x);
y = root(y);
if (x == y) { return false; }
if (m_rank[x] < m_rank[y]) {
std::swap(x, y);
p = -p;
}
if (m_rank[x] == m_rank[y]) { ++m_rank[x]; }
m_size[x] = m_size[y] = size(x) + size(y);
m_root[y] = x;
m_potential[y] = p;
return true;
}
auto root(int x) -> int {
if (m_root[x] == x) { return x; }
int r = root(m_root[x]);
m_potential[x] += m_potential[m_root[x]];
return m_root[x] = r;
}
auto potential(int x) -> T {
root(x);
return m_potential[x];
}
auto size(int x) -> int {
if (m_root[x] == x) { return m_size[x]; }
return size(m_root[x] = root(m_root[x]));
}
auto isSame(int x, int y) { return root(x) == root(y); }
auto diff(int x, int y) { return potential(y) - potential(x); }
friend std::ostream& operator<<(std::ostream& os,
const PotentialDisjointSetUnion& dsu) {
for (const auto& x : dsu.m_root) { os << x << " "; }
return os;
}
};
} // namespace mtd
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#line 4 "Library/Graph/Graph.hpp"
#include <ranges>
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 7 "Library/Graph/Normal/Kruskal.hpp"
namespace mtd {
template <class Node, class Cost>
auto kruskal(const Graph<Node, Cost>& graph) {
auto n = graph.size();
auto min_spanning_tree = Graph<Node, Cost>(n);
auto dsu = PotentialDisjointSetUnion(n);
using Type = std::pair<Cost, std::pair<Node, Node>>;
std::priority_queue<Type, std::vector<Type>, std::greater<Type>> q;
for (const auto& [f, t, c] : graph.getEdges()) {
q.emplace(c, std::make_pair(f, t));
}
while (!q.empty()) {
auto [cost, ft] = q.top();
auto [from, to] = ft;
q.pop();
if (dsu.isSame(from, to)) { continue; }
dsu.unite(from, to);
min_spanning_tree.addEdge(from, to, cost);
}
return min_spanning_tree;
}
} // namespace mtd
#line 5 "Test/Graph/Normal/Kruskal.test.cpp"
#line 7 "Test/Graph/Normal/Kruskal.test.cpp"
#line 9 "Test/Graph/Normal/Kruskal.test.cpp"
using ll = long long;
using std::cin;
using std::cout;
constexpr char endl = '\n';
signed main() {
int n, m;
cin >> n >> m;
auto graph = mtd::Graph(n);
for (int i = 0; i < m; ++i) {
int s, t, w;
cin >> s >> t >> w;
graph.addEdge(s, t, w);
}
auto min_spanning_tree = mtd::kruskal(graph);
ll ans = 0;
for (const auto& [f, t, c] : min_spanning_tree.getEdges()) {
if (f < t) { ans += c; }
}
cout << ans << endl;
}