This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_5_C"
#include <iostream>
// begin:tag includes
#include "./../../../Library/Graph/Graph.hpp"
#include "./../../../Library/Graph/Tree/HeavyLightDecomposition.hpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
ll n;
std::cin >> n;
auto tree = mtd::Graph<int, bool>(n);
for (int f = 0; f < n; ++f) {
ll k;
std::cin >> k;
for (int _ = 0; _ < k; ++_) {
int t;
std::cin >> t;
tree.addArc(f, t);
}
}
auto hld = mtd::HeavyLightDecomposition(tree);
int q;
std::cin >> q;
for (int _ = 0; _ < q; ++_) {
int u, v;
std::cin >> u >> v;
std::cout << hld.lca(u, v) << std::endl;
}
}#line 1 "Test/Graph/Tree/HeavyLightDecomposition_LCA.test.cpp"
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_5_C"
#include <iostream>
// begin:tag includes
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#line 4 "Library/Graph/Graph.hpp"
#include <ranges>
#include <tuple>
#include <vector>
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 2 "Library/Graph/Tree/HeavyLightDecomposition.hpp"
#include <queue>
#include <stack>
#include <unordered_map>
#line 8 "Library/Graph/Tree/HeavyLightDecomposition.hpp"
namespace mtd {
template <class Node, class Cost>
class HeavyLightDecomposition {
using GraphOrderd = std::unordered_map<Node, std::deque<Node>>;
const Node m_n;
const std::vector<Node> m_size;
const GraphOrderd m_tree;
const std::vector<Node> m_height;
const std::vector<std::pair<Node, Node>> m_root_par;
const std::vector<Node> m_ids;
const std::vector<Node> m_order;
const std::vector<Node> m_edge_ids;
static auto constructGraph(const Graph<Node, Cost>& tree) {
auto n = tree.size();
std::deque<std::pair<Node, Node>> order;
std::vector<Node> used(n);
std::stack<std::pair<Node, Node>> stk;
stk.emplace(0, -1);
used[0] = true;
while (!stk.empty()) {
auto [f, p] = stk.top();
order.emplace_front(f, p);
stk.pop();
for (const auto& [t, _] : tree.getEdges(f)) {
if (used[t]) {
continue;
;
}
used[t] = true;
stk.emplace(t, f);
}
}
std::vector<Node> size(n, 1);
GraphOrderd hld_tree;
for (const auto& [f, p] : order) {
Node size_sum = 1;
Node size_max = 0;
std::deque<Node> to_list;
for (const auto& [t, _] : tree.getEdges(f)) {
if (t == p) { continue; }
if (size[t] > size_max) {
size_max = size[t];
to_list.emplace_back(t);
} else {
to_list.emplace_front(t);
}
size_sum += size[t];
}
if (!to_list.empty()) { hld_tree.emplace(f, to_list); }
size[f] = size_sum;
}
return hld_tree;
}
static auto constructSize(const Graph<Node, Cost>& tree) {
auto n = tree.size();
std::deque<std::pair<Node, Node>> order;
std::vector<Node> used(n);
std::stack<std::pair<Node, Node>> stk;
stk.emplace(0, -1);
used[0] = true;
while (!stk.empty()) {
auto [f, p] = stk.top();
order.emplace_front(f, p);
stk.pop();
for (const auto& [t, _] : tree.getEdges(f)) {
if (used[t]) {
continue;
;
}
used[t] = true;
stk.emplace(t, f);
}
}
std::vector<Node> size(n, 1);
for (const auto& [f, p] : order) {
Node size_sum = 1;
for (const auto& [t, _] : tree.getEdges(f)) {
if (t == p) { continue; }
size_sum += size[t];
}
size[f] = size_sum;
}
return size;
}
static auto constructRootPar(Node n, const GraphOrderd& tree) {
std::vector<std::pair<Node, Node>> root_par(n);
std::stack<std::tuple<Node, Node, Node>> stk;
stk.emplace(0, 0, -1);
while (!stk.empty()) {
auto [f, root, par] = stk.top();
stk.pop();
if (tree.find(f) == tree.end()) {
root_par[f] = {root, par};
continue;
}
auto itr = tree.at(f).rbegin();
stk.emplace(*itr, root, par);
root_par[f] = {root, par};
for (++itr; itr != tree.at(f).rend(); ++itr) {
stk.emplace(*itr, *itr, f);
}
}
return root_par;
}
static auto constructHeight(Node n, const GraphOrderd& tree) {
std::vector<Node> height(n);
std::queue<Node> q;
q.emplace(0);
while (!q.empty()) {
auto f = q.front();
q.pop();
if (tree.find(f) == tree.end()) { continue; }
for (const auto& t : tree.at(f)) {
height[t] = height[f] + 1;
q.emplace(t);
}
}
return height;
}
auto constructIds() const {
std::vector<Node> ids(m_n);
Node val = 0;
std::stack<Node> stk;
stk.emplace(0);
while (!stk.empty()) {
auto f = stk.top();
stk.pop();
ids[f] = val;
++val;
if (m_tree.find(f) == m_tree.end()) { continue; }
for (const auto& t : m_tree.at(f)) { stk.emplace(t); }
}
return ids;
}
auto constructOrder() const {
std::vector<Node> order(m_n);
for (int i = 0; i < m_n; ++i) { order[m_ids[i]] = i; }
return order;
}
/*
* 辺をnodeとして拡張した場合の辺nodeだけIDを振る
* (1) - (2)
* (1) - (e) - (2)
* [-1, -1, 0]
*/
auto constructEdgeIds() const {
Node edge_size = (m_n >> 1);
std::vector<Node> edge_ids(m_n, -1);
Node val = 0;
std::stack<Node> stk;
stk.emplace(0);
while (!stk.empty()) {
auto f = stk.top();
stk.pop();
if (f > edge_size) {
edge_ids[f] = val;
++val;
}
if (m_tree.find(f) == m_tree.end()) { continue; }
for (const auto& t : m_tree.at(f)) { stk.emplace(t); }
}
return edge_ids;
}
public:
HeavyLightDecomposition(const Graph<Node, Cost>& tree)
: m_n(tree.size()),
m_size(constructSize(tree)),
m_tree(constructGraph(tree)),
m_root_par(constructRootPar(m_n, m_tree)),
m_height(constructHeight(m_n, m_tree)),
m_ids(constructIds()),
m_order(constructOrder()),
m_edge_ids(constructEdgeIds()) {}
auto getId(Node i) const { return m_ids[i]; }
auto getEdgeId(Node i) const { return m_edge_ids[i]; }
auto getOrder(Node i) const { return m_order[i]; }
auto lca(Node f, Node t) const {
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if (fr == tr) { break; }
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if (fph < tph) {
t = tp;
} else {
f = fp;
}
} while (true);
return (m_height[f] < m_height[t]) ? f : t;
}
auto range(Node f, Node t) const {
std::deque<std::pair<Node, Node>> ret;
auto add = [&](Node from, Node to) {
auto l = std::min(m_ids[from], m_ids[to]);
auto r = std::max(m_ids[from], m_ids[to]);
ret.emplace_back(l, r);
};
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if (fr == tr) {
add(f, t);
break;
}
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if (fph < tph) {
add(t, tr);
t = tp;
} else {
add(f, fr);
f = fp;
}
} while (true);
return ret;
}
auto rangeEdge(Node f, Node t) const {
Node edge_size = (m_n >> 1);
std::deque<std::pair<Node, Node>> ret;
auto add = [&](Node from, Node to) {
auto l = std::min(m_ids[from], m_ids[to]);
auto r = std::max(m_ids[from], m_ids[to]);
if (m_order[l] <= edge_size) { ++l; }
if (m_order[r] <= edge_size) { --r; }
if (l > r) { return; }
auto edge_l = m_edge_ids[m_order[l]];
auto edge_r = m_edge_ids[m_order[r]];
ret.emplace_back(edge_l, edge_r);
};
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if (fr == tr) {
add(f, t);
break;
}
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if (fph < tph) {
add(t, tr);
t = tp;
} else {
add(f, fr);
f = fp;
}
} while (true);
return ret;
}
auto rangeSubTree(Node f) const {
return std::pair<Node, Node>{m_ids[f], m_ids[f] + m_size[f] - 1};
}
};
} // namespace mtd
#line 9 "Test/Graph/Tree/HeavyLightDecomposition_LCA.test.cpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
ll n;
std::cin >> n;
auto tree = mtd::Graph<int, bool>(n);
for (int f = 0; f < n; ++f) {
ll k;
std::cin >> k;
for (int _ = 0; _ < k; ++_) {
int t;
std::cin >> t;
tree.addArc(f, t);
}
}
auto hld = mtd::HeavyLightDecomposition(tree);
int q;
std::cin >> q;
for (int _ = 0; _ < q; ++_) {
int u, v;
std::cin >> u >> v;
std::cout << hld.lca(u, v) << std::endl;
}
}