CompetitiveProgrammingCpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub

:heavy_check_mark: Test/Graph/Tree/HeavyLightDecomposition_edge.test.cpp

Depends on

Code

#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_5_E"

#include <iostream>


// begin:tag includes

#include "./../../../Library/DataStructure/LazySegmentTree.hpp"

#include "./../../../Library/Graph/Graph.hpp"

#include "./../../../Library/Graph/Tree/HeavyLightDecomposition.hpp"

// end:tag includes


using ll = long long;

signed main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  ll n;
  std::cin >> n;
  auto size = n + n - 1;
  auto tree = mtd::Graph<int, bool>(size);
  ll add = n;
  for (int f = 0; f < n; ++f) {
    int k;
    std::cin >> k;
    for (int _ = 0; _ < k; ++_) {
      int t;
      std::cin >> t;
      tree.addEdge(f, add);
      tree.addEdge(t, add);
      ++add;
    }
  }

  std::vector<std::pair<ll, ll>> v(n - 1, {0, 1});
  auto segtree = mtd::LazySegmentTree<mtd::type::M_SUM, mtd::type::M_ADD,
                                      mtd::type::OP_SUM_ADD>(n - 1, v);
  // NOTE: 初期値が含まれる場合はID順に並び変える

  // val[hld.getEdgeId(i + n)] = v[i];

  auto hld = mtd::HeavyLightDecomposition(tree);

  ll q;
  std::cin >> q;
  for (int _ = 0; _ < q; ++_) {
    ll k;
    std::cin >> k;
    if (k == 0) {
      ll v, w;
      std::cin >> v >> w;
      for (const auto& [l, r] : hld.rangeEdge(0, v)) {
        segtree.update(l, r, w);
      }
    } else {
      ll u;
      std::cin >> u;
      ll ans = 0;
      for (const auto& [l, r] : hld.rangeEdge(0, u)) {
        ans += segtree.query(l, r).first;
      }
      std::cout << ans << std::endl;
    }
  }
}
#line 1 "Test/Graph/Tree/HeavyLightDecomposition_edge.test.cpp"
#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_5_E"

#include <iostream>


// begin:tag includes

#line 2 "Library/DataStructure/LazySegmentTree.hpp"

#include <deque>

#line 5 "Library/DataStructure/LazySegmentTree.hpp"
#include <utility>

#include <vector>


#line 2 "Library/Algebraic/Monoid.hpp"

#line 4 "Library/Algebraic/Monoid.hpp"

namespace mtd {

  template <class S,    // set
            S element,  // identity element
            class op    // binary operation
            >
  requires std::is_invocable_r_v<S, op, S, S>
  struct Monoid {
    using value_type = S;
    constexpr static S _element = element;
    using op_type = op;

    S m_val;
    constexpr Monoid(S val) : m_val(val) {}
    constexpr Monoid() : Monoid(element) {}
    constexpr Monoid binaryOperation(const Monoid& m2) const {
      return op()(m_val, m2.m_val);
    }
    friend std::ostream& operator<<(std::ostream& os,
                                    const Monoid<S, element, op>& m) {
      return os << m.m_val;
    }
  };

  namespace __detail {
    template <typename T, template <typename, auto, typename> typename S>
    concept is_monoid_specialization_of = requires {
      typename std::enable_if_t<std::is_same_v<
          T, S<typename T::value_type, T::_element, typename T::op_type>>>;
    };
  }  // namespace __detail

  template <typename M>
  concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;

}  // namespace mtd
#line 9 "Library/DataStructure/LazySegmentTree.hpp"

namespace mtd {
  template <monoid Monoid, monoid MonoidOp, class op>
  class LazySegmentTree {
  private:
    const int m_size;
    std::vector<Monoid> m_node;
    std::vector<MonoidOp> m_lazy;
    using S = decltype(Monoid().m_val);

    constexpr int calcSize(int n) const {
      int size = 1;
      while (size < n) { size <<= 1; }
      return size;
    }

    constexpr auto _lazy_update(int i, const MonoidOp& val) {
      if (i >= (m_size << 1) - 1) { return; }
      m_lazy[i] = m_lazy[i].binaryOperation(val);
    }

    constexpr auto _propagate(int i) {
      m_node[i] = op()(m_node[i], m_lazy[i]);
      _lazy_update((i << 1) + 1, m_lazy[i]);
      _lazy_update((i << 1) + 2, m_lazy[i]);
      m_lazy[i] = MonoidOp();
    }

    constexpr auto _update(int l, int r, int k, int nl, int nr,
                           const MonoidOp& m) {
      _propagate(k);
      if (nr < l || r < nl) { return; }
      if (l <= nl && nr <= r) {
        _lazy_update(k, m);
        _propagate(k);
        return;
      }
      _update(l, r, (k << 1) + 1, nl, (nl + nr) >> 1, m);
      _update(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr, m);
      m_node[k] = m_node[(k << 1) + 1].binaryOperation(m_node[(k << 1) + 2]);
    }

    constexpr auto _query(int l, int r, int k, int nl, int nr) {
      _propagate(k);
      if (nr < l || r < nl) { return Monoid(); }
      if (l <= nl && nr <= r) { return m_node[k]; }
      auto l_val = _query(l, r, (k << 1) + 1, nl, (nl + nr) >> 1);
      auto r_val = _query(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr);
      return l_val.binaryOperation(r_val);
    }

    constexpr auto _construct(const std::vector<S>& vec) {
      for (unsigned int i = 0; i < vec.size(); ++i) {
        m_node[i + m_size - 1] = Monoid(vec[i]);
      }
      for (int i = m_size - 2; i >= 0; --i) {
        m_node[i] =
            m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1LL]);
      }
    }

  public:
    constexpr LazySegmentTree(int n)
        : m_size(calcSize(n)),
          m_node((m_size << 1) - 1),
          m_lazy((m_size << 1) - 1) {}
    constexpr LazySegmentTree(int n, const std::vector<S>& vec)
        : LazySegmentTree(n) {
      _construct(vec);
    }

    constexpr auto update(int l, int r, const MonoidOp& val) {
      _update(l, r, 0, 0, m_size - 1, val);
    }

    constexpr auto query(int l, int r) {
      return _query(l, r, 0, 0, m_size - 1).m_val;
    }

    /*
     * f([l, r]) = true となる最大のr
     * judge: (Monoid) -> bool
     **/
    template <class F>
    constexpr auto max_right(int _l, const F& judge) {
      if (!judge(Monoid())) {
        throw std::runtime_error("SegmentTree.max_right.judge(e) must be true");
      }
      query(_l, m_size - 1);
      auto l = std::max(_l, 0) + m_size;
      auto r = 2 * m_size - 1;
      auto lm = Monoid();
      while (l <= r) {
        if (l & 1) {
          auto next = lm.binaryOperation(m_node[l - 1]);
          if (!judge(next)) {
            auto itr = l;
            while (itr < m_size) {
              auto litr = 2 * itr;
              auto ritr = 2 * itr + 1;
              _propagate(itr - 1);
              _propagate(litr - 1);
              auto lval = lm.binaryOperation(m_node[litr - 1]);
              if (!judge(lval)) {
                itr = litr;
              } else {
                itr = ritr;
                std::swap(lm, lval);
              }
            }
            return itr - m_size - 1;
          }
          std::swap(lm, next);
          ++l;
        }
        l >>= 1, r >>= 1;
      }
      return m_size - 1;
    }

    /*
     * f([l, r]) = true となる最小のl
     * judge: (Monoid) -> bool
     **/
    template <class F>
    constexpr auto min_left(int _r, const F& judge) {
      if (!judge(Monoid())) {
        throw std::runtime_error("SegmentTree.min_left.judge(e) must be true");
      }
      query(0, _r);
      auto l = m_size;
      auto r = std::min(_r, m_size - 1) + m_size;
      auto rm = Monoid();
      while (l <= r) {
        if (l & 1) { ++l; }
        if (!(r & 1) || (_r == m_size - 1 && r == 1)) {
          auto next = m_node[r - 1].binaryOperation(rm);
          if (!judge(next)) {
            auto itr = r;
            while (itr < m_size) {
              auto litr = 2 * itr;
              auto ritr = 2 * itr + 1;
              _propagate(itr - 1);
              _propagate(ritr - 1);
              auto rval = m_node[ritr - 1].binaryOperation(rm);
              if (!judge(rval)) {
                itr = ritr;
              } else {
                itr = litr;
                std::swap(rm, rval);
              }
            }
            return itr - m_size + 1;
          }
          std::swap(rm, next);
          --r;
        }
        l >>= 1, r >>= 1;
      }
      return 0;
    }

    constexpr auto debug() {
      for (int i = 0; i < (m_size << 1) - 1; ++i) { _propagate(i); }
      for (int i = 0; i < m_size; ++i) {
        std::cout << m_node[m_size + i - 1] << " ";
      }
      std::cout << std::endl;
    }
  };

  namespace type {
    /* 各種頻出サンプル */
    using P = std::pair<long long, long long>;
    constexpr long long update_element = -1e18;

    /*---- 要素 ----*/
    using M_SUM = Monoid<P, P{0, 0}, decltype([](const P& a, const P& b) {
                           return P{a.first + b.first, a.second + b.second};
                         })>;
    using M_MIN = Monoid<long long, static_cast<long long>(1e18),
                         decltype([](long long a, long long b) {
                           return std::min(a, b);
                         })>;
    using M_MAX = Monoid<long long, static_cast<long long>(-1e18),
                         decltype([](long long a, long long b) {
                           return std::max(a, b);
                         })>;
    /*---- 作用素 ----*/
    using M_UP = Monoid<long long, update_element,
                        decltype([](long long a, long long b) {
                          if (b == update_element) { return a; }
                          return b;
                        })>;
    using M_ADD =
        Monoid<long long, static_cast<long long>(0),
               decltype([](long long a, long long b) { return a + b; })>;

    /*---- 作用 ----*/
    using OP_SUM_UP = decltype([](const M_SUM& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_SUM(P{m.m_val.second * m2.m_val, m.m_val.second});
    });
    using OP_MIN_UP = decltype([](const M_MIN& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_MIN(m2.m_val);
    });
    using OP_MAX_UP = decltype([](const M_MAX& m, const M_UP& m2) {
      if (m2.m_val == update_element) { return m; }
      return M_MAX(m2.m_val);
    });
    using OP_SUM_ADD = decltype([](const M_SUM& m, const M_ADD& m2) {
      return M_SUM(
          P{m.m_val.first + m.m_val.second * m2.m_val, m.m_val.second});
    });
    using OP_MIN_ADD = decltype([](const M_MIN& m, const M_ADD& m2) {
      return M_MIN{m.m_val + m2.m_val};
    });
    using OP_MAX_ADD = decltype([](const M_MAX& m, const M_ADD& m2) {
      return M_MAX{m.m_val + m2.m_val};
    });

  }  // namespace type

}  // namespace mtd

#line 4 "Library/Graph/Graph.hpp"
#include <ranges>

#include <tuple>

#line 7 "Library/Graph/Graph.hpp"

namespace mtd {
  template <class Node = long long, class Cost = long long>
  class Graph {
    using Edge = std::pair<Node, Cost>;
    using Edges = std::vector<Edge>;

    const int m_n;
    std::vector<Edges> m_graph;

  public:
    Graph(int n) : m_n(n), m_graph(n) {}
    Graph(const std::vector<Edges>& edges)
        : m_n(edges.size()), m_graph(edges) {}
    Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
          bool is_arc = false, bool is_index1 = true)
        : Graph<Node, Cost>(n) {
      for (auto [u, v] : edges) {
        u -= is_index1;
        v -= is_index1;
        if (is_arc) {
          addArc(u, v);
        } else {
          addEdge(u, v);
        }
      }
    }
    Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
          bool is_arc = false, bool is_index1 = true)
        : Graph<Node, Cost>(n) {
      for (auto [u, v, c] : edges) {
        u -= is_index1;
        v -= is_index1;
        if (is_arc) {
          addArc(u, v, c);
        } else {
          addEdge(u, v, c);
        }
      }
    }

    auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
      addArc(f, t, c);
      addArc(t, f, c);
    }
    auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
      m_graph[f].emplace_back(t, c);
    }
    auto getEdges(const Node& from) const {
      class EdgesRange {
        const typename Edges::const_iterator b, e;

      public:
        EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
        auto begin() const { return b; }
        auto end() const { return e; }
      };
      return EdgesRange(m_graph[from]);
    }
    auto getEdges() const {
      std::deque<std::tuple<Node, Node, Cost>> edges;
      for (Node from : std::views::iota(0, m_n)) {
        for (const auto& [to, c] : getEdges(from)) {
          edges.emplace_back(from, to, c);
        }
      }
      return edges;
    }
    auto getEdgesExcludeCost() const {
      std::deque<std::pair<Node, Node>> edges;
      for (Node from : std::views::iota(0, m_n)) {
        for (const auto& [to, _] : getEdges(from)) {
          edges.emplace_back(from, to);
        }
      }
      return edges;
    }
    auto reverse() const {
      auto rev = Graph<Node, Cost>(m_n);
      for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
      return rev;
    }
    auto size() const { return m_n; };
    auto debug(bool directed = false) const {
      for (const auto& [f, t, c] : getEdges()) {
        if (f < t || directed) {
          std::cout << f << " -> " << t << ": " << c << std::endl;
        }
      }
    }
  };
}  // namespace mtd

#line 2 "Library/Graph/Tree/HeavyLightDecomposition.hpp"

#include <queue>

#include <stack>

#include <unordered_map>


#line 8 "Library/Graph/Tree/HeavyLightDecomposition.hpp"

namespace mtd {
  template <class Node, class Cost>
  class HeavyLightDecomposition {
    using GraphOrderd = std::unordered_map<Node, std::deque<Node>>;

    const Node m_n;
    const std::vector<Node> m_size;
    const GraphOrderd m_tree;
    const std::vector<Node> m_height;
    const std::vector<std::pair<Node, Node>> m_root_par;
    const std::vector<Node> m_ids;
    const std::vector<Node> m_order;
    const std::vector<Node> m_edge_ids;

    static auto constructGraph(const Graph<Node, Cost>& tree) {
      auto n = tree.size();
      std::deque<std::pair<Node, Node>> order;
      std::vector<Node> used(n);
      std::stack<std::pair<Node, Node>> stk;
      stk.emplace(0, -1);
      used[0] = true;
      while (!stk.empty()) {
        auto [f, p] = stk.top();
        order.emplace_front(f, p);
        stk.pop();
        for (const auto& [t, _] : tree.getEdges(f)) {
          if (used[t]) {
            continue;
            ;
          }
          used[t] = true;
          stk.emplace(t, f);
        }
      }

      std::vector<Node> size(n, 1);
      GraphOrderd hld_tree;
      for (const auto& [f, p] : order) {
        Node size_sum = 1;
        Node size_max = 0;
        std::deque<Node> to_list;
        for (const auto& [t, _] : tree.getEdges(f)) {
          if (t == p) { continue; }
          if (size[t] > size_max) {
            size_max = size[t];
            to_list.emplace_back(t);
          } else {
            to_list.emplace_front(t);
          }
          size_sum += size[t];
        }
        if (!to_list.empty()) { hld_tree.emplace(f, to_list); }
        size[f] = size_sum;
      }
      return hld_tree;
    }

    static auto constructSize(const Graph<Node, Cost>& tree) {
      auto n = tree.size();
      std::deque<std::pair<Node, Node>> order;
      std::vector<Node> used(n);
      std::stack<std::pair<Node, Node>> stk;
      stk.emplace(0, -1);
      used[0] = true;
      while (!stk.empty()) {
        auto [f, p] = stk.top();
        order.emplace_front(f, p);
        stk.pop();
        for (const auto& [t, _] : tree.getEdges(f)) {
          if (used[t]) {
            continue;
            ;
          }
          used[t] = true;
          stk.emplace(t, f);
        }
      }

      std::vector<Node> size(n, 1);
      for (const auto& [f, p] : order) {
        Node size_sum = 1;
        for (const auto& [t, _] : tree.getEdges(f)) {
          if (t == p) { continue; }
          size_sum += size[t];
        }
        size[f] = size_sum;
      }
      return size;
    }

    static auto constructRootPar(Node n, const GraphOrderd& tree) {
      std::vector<std::pair<Node, Node>> root_par(n);
      std::stack<std::tuple<Node, Node, Node>> stk;
      stk.emplace(0, 0, -1);
      while (!stk.empty()) {
        auto [f, root, par] = stk.top();
        stk.pop();

        if (tree.find(f) == tree.end()) {
          root_par[f] = {root, par};
          continue;
        }
        auto itr = tree.at(f).rbegin();
        stk.emplace(*itr, root, par);
        root_par[f] = {root, par};
        for (++itr; itr != tree.at(f).rend(); ++itr) {
          stk.emplace(*itr, *itr, f);
        }
      }
      return root_par;
    }
    static auto constructHeight(Node n, const GraphOrderd& tree) {
      std::vector<Node> height(n);
      std::queue<Node> q;
      q.emplace(0);
      while (!q.empty()) {
        auto f = q.front();
        q.pop();
        if (tree.find(f) == tree.end()) { continue; }
        for (const auto& t : tree.at(f)) {
          height[t] = height[f] + 1;
          q.emplace(t);
        }
      }
      return height;
    }

    auto constructIds() const {
      std::vector<Node> ids(m_n);
      Node val = 0;
      std::stack<Node> stk;
      stk.emplace(0);
      while (!stk.empty()) {
        auto f = stk.top();
        stk.pop();
        ids[f] = val;
        ++val;
        if (m_tree.find(f) == m_tree.end()) { continue; }
        for (const auto& t : m_tree.at(f)) { stk.emplace(t); }
      }
      return ids;
    }

    auto constructOrder() const {
      std::vector<Node> order(m_n);
      for (int i = 0; i < m_n; ++i) { order[m_ids[i]] = i; }
      return order;
    }
    /*
     * 辺をnodeとして拡張した場合の辺nodeだけIDを振る
     * (1) - (2)
     * (1) - (e) - (2)
     * [-1, -1, 0]
     */
    auto constructEdgeIds() const {
      Node edge_size = (m_n >> 1);
      std::vector<Node> edge_ids(m_n, -1);
      Node val = 0;
      std::stack<Node> stk;
      stk.emplace(0);
      while (!stk.empty()) {
        auto f = stk.top();
        stk.pop();
        if (f > edge_size) {
          edge_ids[f] = val;
          ++val;
        }
        if (m_tree.find(f) == m_tree.end()) { continue; }
        for (const auto& t : m_tree.at(f)) { stk.emplace(t); }
      }
      return edge_ids;
    }

  public:
    HeavyLightDecomposition(const Graph<Node, Cost>& tree)
        : m_n(tree.size()),
          m_size(constructSize(tree)),
          m_tree(constructGraph(tree)),
          m_root_par(constructRootPar(m_n, m_tree)),
          m_height(constructHeight(m_n, m_tree)),
          m_ids(constructIds()),
          m_order(constructOrder()),
          m_edge_ids(constructEdgeIds()) {}

    auto getId(Node i) const { return m_ids[i]; }
    auto getEdgeId(Node i) const { return m_edge_ids[i]; }
    auto getOrder(Node i) const { return m_order[i]; }

    auto lca(Node f, Node t) const {
      do {
        auto [fr, fp] = m_root_par[f];
        auto [tr, tp] = m_root_par[t];
        if (fr == tr) { break; }
        auto fph = (fp > -1) ? m_height[fp] : -1;
        auto tph = (tp > -1) ? m_height[tp] : -1;
        if (fph < tph) {
          t = tp;
        } else {
          f = fp;
        }
      } while (true);
      return (m_height[f] < m_height[t]) ? f : t;
    }

    auto range(Node f, Node t) const {
      std::deque<std::pair<Node, Node>> ret;
      auto add = [&](Node from, Node to) {
        auto l = std::min(m_ids[from], m_ids[to]);
        auto r = std::max(m_ids[from], m_ids[to]);
        ret.emplace_back(l, r);
      };
      do {
        auto [fr, fp] = m_root_par[f];
        auto [tr, tp] = m_root_par[t];
        if (fr == tr) {
          add(f, t);
          break;
        }
        auto fph = (fp > -1) ? m_height[fp] : -1;
        auto tph = (tp > -1) ? m_height[tp] : -1;
        if (fph < tph) {
          add(t, tr);
          t = tp;
        } else {
          add(f, fr);
          f = fp;
        }
      } while (true);
      return ret;
    }

    auto rangeEdge(Node f, Node t) const {
      Node edge_size = (m_n >> 1);
      std::deque<std::pair<Node, Node>> ret;
      auto add = [&](Node from, Node to) {
        auto l = std::min(m_ids[from], m_ids[to]);
        auto r = std::max(m_ids[from], m_ids[to]);
        if (m_order[l] <= edge_size) { ++l; }
        if (m_order[r] <= edge_size) { --r; }
        if (l > r) { return; }
        auto edge_l = m_edge_ids[m_order[l]];
        auto edge_r = m_edge_ids[m_order[r]];
        ret.emplace_back(edge_l, edge_r);
      };
      do {
        auto [fr, fp] = m_root_par[f];
        auto [tr, tp] = m_root_par[t];
        if (fr == tr) {
          add(f, t);
          break;
        }
        auto fph = (fp > -1) ? m_height[fp] : -1;
        auto tph = (tp > -1) ? m_height[tp] : -1;
        if (fph < tph) {
          add(t, tr);
          t = tp;
        } else {
          add(f, fr);
          f = fp;
        }
      } while (true);
      return ret;
    }

    auto rangeSubTree(Node f) const {
      return std::pair<Node, Node>{m_ids[f], m_ids[f] + m_size[f] - 1};
    }
  };
}  // namespace mtd

#line 10 "Test/Graph/Tree/HeavyLightDecomposition_edge.test.cpp"
// end:tag includes


using ll = long long;

signed main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  ll n;
  std::cin >> n;
  auto size = n + n - 1;
  auto tree = mtd::Graph<int, bool>(size);
  ll add = n;
  for (int f = 0; f < n; ++f) {
    int k;
    std::cin >> k;
    for (int _ = 0; _ < k; ++_) {
      int t;
      std::cin >> t;
      tree.addEdge(f, add);
      tree.addEdge(t, add);
      ++add;
    }
  }

  std::vector<std::pair<ll, ll>> v(n - 1, {0, 1});
  auto segtree = mtd::LazySegmentTree<mtd::type::M_SUM, mtd::type::M_ADD,
                                      mtd::type::OP_SUM_ADD>(n - 1, v);
  // NOTE: 初期値が含まれる場合はID順に並び変える

  // val[hld.getEdgeId(i + n)] = v[i];

  auto hld = mtd::HeavyLightDecomposition(tree);

  ll q;
  std::cin >> q;
  for (int _ = 0; _ < q; ++_) {
    ll k;
    std::cin >> k;
    if (k == 0) {
      ll v, w;
      std::cin >> v >> w;
      for (const auto& [l, r] : hld.rangeEdge(0, v)) {
        segtree.update(l, r, w);
      }
    } else {
      ll u;
      std::cin >> u;
      ll ans = 0;
      for (const auto& [l, r] : hld.rangeEdge(0, u)) {
        ans += segtree.query(l, r).first;
      }
      std::cout << ans << std::endl;
    }
  }
}
Back to top page