This documentation is automatically generated by online-judge-tools/verification-helper
#include <vector>
#define PROBLEM "https://yukicoder.me/problems/no/2360"
#include <iostream>
// begin:tag includes
#include "../../../Library/Graph/Tree/ReRootingDP.hpp"
#include "../../../Library/Math/ModInt.hpp"
// end:tag includes
using ll = long long;
constexpr ll MOD = 998244353;
using mint = mtd::ModInt<MOD>;
auto math = mtd::Math<mint>();
struct S {
mint m;
ll s;
constexpr S(const mint& m, const ll s) : m(m), s(s) {}
constexpr S() : S(0, 0) {}
};
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
ll n;
std::cin >> n;
std::vector<ll> a(n);
for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; }
auto graph = mtd::Graph<>(n);
for ([[maybe_unused]] auto _ : std::views::iota(0, n - 1)) {
int u, v;
std::cin >> u >> v;
graph.addEdge(u - 1, v - 1);
}
std::vector<mint> at;
for (auto x : a) {
auto size = std::to_string(x).size();
at.emplace_back(math.pow(10, size));
}
auto op = [](const S& a, const S& b) { return S(a.m + b.m, a.s + b.s); };
using M = mtd::Monoid<S, S(0, 0), decltype(op)>;
auto edge_f = [&](const M& m, int f, int t, int c) {
return M(S(m.m_val.m * at[t] + m.m_val.s * a[t], m.m_val.s));
};
auto node_f = [&](const M& m, int i) {
return M(S(m.m_val.m + a[i], m.m_val.s + 1));
};
auto dp = mtd::reRootingDP<M>(graph, edge_f, node_f);
mint ans = 0;
for (auto x : dp) { ans += x.m; }
std::cout << ans << std::endl;
}#line 1 "Test/Graph/Tree/ReRootingDP.test.cpp"
#include <vector>
#define PROBLEM "https://yukicoder.me/problems/no/2360"
#include <iostream>
// begin:tag includes
#line 2 "Library/Graph/Tree/ReRootingDP.hpp"
#include <unordered_map>
#line 4 "Library/Graph/Tree/ReRootingDP.hpp"
#line 2 "Library/Algebraic/Monoid.hpp"
#line 4 "Library/Algebraic/Monoid.hpp"
namespace mtd {
template <class S, // set
S element, // identity element
class op // binary operation
>
requires std::is_invocable_r_v<S, op, S, S>
struct Monoid {
using value_type = S;
constexpr static S _element = element;
using op_type = op;
S m_val;
constexpr Monoid(S val) : m_val(val) {}
constexpr Monoid() : Monoid(element) {}
constexpr Monoid binaryOperation(const Monoid& m2) const {
return op()(m_val, m2.m_val);
}
friend std::ostream& operator<<(std::ostream& os,
const Monoid<S, element, op>& m) {
return os << m.m_val;
}
};
namespace __detail {
template <typename T, template <typename, auto, typename> typename S>
concept is_monoid_specialization_of = requires {
typename std::enable_if_t<std::is_same_v<
T, S<typename T::value_type, T::_element, typename T::op_type>>>;
};
} // namespace __detail
template <typename M>
concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;
} // namespace mtd
#line 2 "Library/Graph/Normal/BFS.hpp"
#include <concepts>
#include <queue>
#line 6 "Library/Graph/Normal/BFS.hpp"
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#line 4 "Library/Graph/Graph.hpp"
#include <ranges>
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 8 "Library/Graph/Normal/BFS.hpp"
namespace mtd {
template <class Node, class Cost, class Lambda,
std::convertible_to<Node> _Node>
auto bfs(const Graph<Node, Cost>& graph, const _Node& root,
const Lambda& lambda) {
auto n = graph.size();
std::vector<bool> used(n);
used[root] = true;
std::queue<Node> q;
q.emplace(root);
while (!q.empty()) {
auto from = q.front();
q.pop();
for (const auto& [to, cost] : graph.getEdges(from)) {
if (used[to]) { continue; }
q.emplace(to);
used[to] = true;
lambda(from, to, cost);
}
}
}
} // namespace mtd
#line 2 "Library/Graph/Tree/TreeDP.hpp"
#line 6 "Library/Graph/Tree/TreeDP.hpp"
#line 8 "Library/Graph/Tree/TreeDP.hpp"
namespace mtd {
template <class Node, class Cost, class Lambda,
std::convertible_to<Node> _Node>
auto treeDP(const Graph<Node, Cost>& tree, _Node root, const Lambda& lambda) {
auto n = tree.size();
std::vector<Node> in(n);
for (const auto& [f, t] : tree.getEdgesExcludeCost())
if (f < t) {
++in[f];
++in[t];
}
std::queue<Node> q;
std::vector<bool> used(n);
for (Node i = 0; i < n; ++i)
if (i != root && in[i] == 1) { q.emplace(i); }
while (!q.empty()) {
auto from = q.front();
q.pop();
used[from] = true;
for (const auto& [to, cost] : tree.getEdges(from)) {
if (used[to]) { continue; }
lambda(from, to, cost);
--in[to];
if (to != root && in[to] == 1) { q.emplace(to); }
}
}
}
} // namespace mtd
#line 8 "Library/Graph/Tree/ReRootingDP.hpp"
namespace mtd {
/*
* Monoid: 部分木の情報
* edge_f: 辺の情報を親に流す関数: (M, f, t, c) -> M
* node_f: 子の情報を親に流す関数: (M, i) -> M
*/
template <monoid Monoid, class Node, class Cost, class Lambda1, class Lambda2>
auto reRootingDP(const Graph<Node, Cost>& graph, const Lambda1& edge_f,
const Lambda2& node_f) {
constexpr int root = 0;
auto n = graph.size();
// <辺情報を考慮したMonoidの2項演算>
auto merge = [&](Monoid& m1, const Monoid& m2, Node f = -1, Node t = -1,
const Cost& c = Cost()) {
m1 = m1.binaryOperation((f == -1 || t == -1) ? m2 : edge_f(m2, f, t, c));
};
// <node:toを根とした木で全てマージした解を求める>
std::vector<std::vector<std::tuple<Monoid, Node, Cost>>> partial(n);
auto all_merge = [&](Node to) {
Monoid val{};
for (const auto& [ad, from, cost] : partial[to]) {
merge(val, ad, from, to, cost);
}
return node_f(val, to);
};
// <node:toを根とした木でfrom以外マージした解を求める>
std::vector<std::unordered_map<Node, Monoid>> partial_ac(n);
std::vector<Monoid> ret_m(n);
auto accumulation = [&](Node to) {
// 左からマージ
Monoid val_ord{};
for (const auto& [ad, from, cost] : partial[to]) {
partial_ac[to].emplace(from, val_ord);
merge(val_ord, ad, from, to, cost);
}
// 右からマージ
Monoid val_rord{};
for (auto rit = partial[to].rbegin(); rit != partial[to].rend(); ++rit) {
auto [ad, from, cost] = *rit;
merge(partial_ac[to][from], val_rord, cost);
merge(val_rord, ad, from, to, cost);
}
// node情報を反映させて値を確定
ret_m[to] = node_f(val_ord, to);
for (auto&& [_, pac] : partial_ac[to]) { pac = node_f(pac, to); }
};
// rootを根とした解を求める
treeDP(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(all_merge(f), f, c);
});
accumulation(0);
// rootからbfsして各nodeを根とした解を求める
bfs(graph, root, [&](Node f, Node t, const Cost& c) {
partial[t].emplace_back(partial_ac[f][t], f, c);
accumulation(t);
});
std::vector<typename Monoid::value_type> ret;
for (const auto x : ret_m) { ret.emplace_back(x.m_val); }
return ret;
}
} // namespace mtd
#line 2 "Library/Math/ModInt.hpp"
#line 4 "Library/Math/ModInt.hpp"
#include <iterator>
#line 2 "Library/Math/Math.hpp"
#include <cmath>
#include <numeric>
#include <optional>
#line 9 "Library/Math/Math.hpp"
#line 2 "Library/Math/EuclideanAlgorithm.hpp"
#line 6 "Library/Math/EuclideanAlgorithm.hpp"
namespace mtd {
class EuclideanAlgorithm {
using T = long long;
// 大きすぎるとオーバーフローしてしまう
const static inline T m_mx = 1e9;
const T m_a;
const T m_b;
const T m_c;
T m_gcd;
T m_x;
T m_y;
auto excludedEuclidAlgorithm(T a, T b) -> std::tuple<T, T, T> {
if (a < 0) {
auto [g, x, y] = excludedEuclidAlgorithm(-a, -b);
return {g, -x, -y};
}
if (b == 0) { return {a, 1, 0}; }
auto [g, y, x] = excludedEuclidAlgorithm(b, a % b);
y -= a / b * x;
return {g, x, y};
}
auto kRange(T x, T b, T l) const -> std::pair<T, T> {
// x + b * k >= l を満たす k の範囲を求める
T xd = (l - x);
if (b == 0 && x >= l) { return {-m_mx, m_mx}; }
if (b == 0 && x < l) { return {m_mx, -m_mx}; }
if (b > 0 && xd < 0) { return {xd / b, m_mx}; }
if (b > 0 && xd >= 0) { return {(xd + b - 1) / b, m_mx}; }
if (b < 0 && xd < 0) { return {-m_mx, (-xd) / (-b)}; }
if (b < 0 && xd >= 0) { return {-m_mx, -(xd - b - 1) / (-b)}; }
return {m_mx, -m_mx};
}
public:
auto debug() const {
std::cout << m_a << " * " << m_x << " + " << m_b << " * " << m_y << " = "
<< m_c << std::endl;
std::cout << "calc: " << m_a * m_x + m_b * m_y << " = " << m_c
<< std::endl;
}
EuclideanAlgorithm(T a, T b, T c) : m_a(a), m_b(b), m_c(c) {
if (a == 0 && b == 0) { throw std::runtime_error(""); }
auto [g, x, y] = excludedEuclidAlgorithm(a, b);
if (c % g > 0) {
throw std::runtime_error(
"There is no solution to the equation. c must be divisible by "
"gcd(a,b).");
}
m_gcd = g;
m_x = c / g * x;
m_y = c / g * y;
}
EuclideanAlgorithm(T a, T b) : EuclideanAlgorithm(a, b, std::gcd(a, b)) {}
auto gcd() const { return m_gcd; }
auto get(T x, T y) const { return m_a * x + m_b * y; }
auto get(T k) const -> std::pair<T, T> {
if (m_b == 0) { return {m_x, m_y - k}; }
if (m_a == 0) { return {m_x + k, m_y}; }
return {m_x + m_b * k, m_y - m_a * k};
}
// x>=x_lとなるようなkの範囲
auto getMinX(T x_l = 0) const -> std::pair<T, T> {
return kRange(m_x, m_b, x_l);
}
// y>=y_lとなるようなkの範囲
auto getMinY(T y_l = 0) const -> std::pair<T, T> {
return kRange(m_y, -1 * m_a, y_l);
}
// x>=x_l, y>=y_lとなるようなkの範囲
auto getMin(T x_l = 0, T y_l = 0) const -> std::pair<T, T> {
auto [xl, xr] = getMinX(x_l);
auto [yl, yr] = getMinY(y_l);
return {std::max(xl, yl), std::min(xr, yr)};
}
};
} // namespace mtd
#line 11 "Library/Math/Math.hpp"
namespace mtd {
template <class T>
class Math {
const std::vector<T> m_fac;
const std::vector<T> m_finv;
auto constructFac(int s) {
std::vector<T> fac(s);
fac[0] = fac[1] = 1;
for (long long i = 2; i < s; ++i) { fac[i] = fac[i - 1] * i; }
return fac;
}
auto constructInv(int s) {
std::vector<T> finv(s);
finv[s - 1] = 1 / m_fac[s - 1];
for (long long i = s - 2; i >= 0; --i) {
finv[i] = finv[i + 1] * (i + 1);
}
return finv;
}
public:
constexpr Math(int size = 3 * static_cast<int>(1e6))
: m_fac(constructFac(size)), m_finv(constructInv(size)) {}
/* O(log b) */
static constexpr T pow(T a, long long b) {
T ans = 1;
while (b > 0) {
if (b & 1) { ans *= a; }
b >>= 1;
a *= a;
}
return ans;
}
/* O(log mod) */
template <class S>
static constexpr std::optional<long long> log(S x, S y, S mod) {
x %= mod;
y %= mod;
if (mod == 1) { return 0; }
if (x == 0 && y == 0) { return 1; }
if (x == 0 && y == 1) { return 0; }
if (x == 0) { return std::nullopt; }
if (y == 1) { return 0; }
if (auto g = std::gcd(x, mod); g > 1) {
if (y % g) { return std::nullopt; }
auto nx = x / g;
auto nmod = mod / g;
auto ea = mtd::EuclideanAlgorithm(nx, -nmod, 1);
auto [t, _] = ea.getMinX();
auto [nx_inv, __] = ea.get(t);
nx_inv %= nmod;
if (auto ans = log(x, y / g * nx_inv, nmod); ans) {
return ans.value() + 1;
} else {
return ans;
}
}
auto s = static_cast<S>(std::sqrt(mod));
S xe = y;
std::unordered_map<S, S> map;
map.reserve(s);
for (auto i : std::views::iota(0, s)) {
(xe *= x) %= mod;
map[xe] = i + 1;
}
S xs = 1;
for ([[maybe_unused]] auto _ : std::views::iota(0, s)) {
(xs *= x) %= mod;
}
S xse = 1;
for (auto i : std::views::iota(0, mod / s + 5)) {
(xse *= xs) %= mod;
if (map.contains(xse)) { return s * (i + 1) - map[xse]; }
}
return std::nullopt;
}
constexpr std::optional<long long> log(long long x,
long long y) requires requires {
typename T::value_type;
T::mod();
}
{ return log(x, y, T::mod()); }
constexpr auto fact(int n) const { return (n < 0) ? 0 : m_fac[n]; }
constexpr auto factInv(int n) const { return (n < 0 ? 0 : m_finv[n]); }
constexpr auto comb(int n, int r) const {
return fact(n) * factInv(r) * factInv(n - r);
}
constexpr auto perm(int n, int r) const { return fact(n) * factInv(n - r); }
};
} // namespace mtd
#line 7 "Library/Math/ModInt.hpp"
namespace mtd {
template <int MOD, class T = long long>
class ModInt {
public:
using value_type = T;
T x;
constexpr ModInt(T _x) : x(_x >= 0 ? _x % MOD : MOD + (_x % MOD)) {}
constexpr ModInt() : ModInt(0) {}
// 四則演算
constexpr auto& operator+=(const ModInt<MOD, T>& m) {
x += m.x;
if (x >= MOD) { x -= MOD; }
return *this;
}
constexpr auto& operator-=(const ModInt<MOD, T>& m) {
x -= m.x;
if (x < 0) { x += MOD; }
return *this;
}
constexpr auto& operator*=(const ModInt<MOD, T>& m) {
x *= m.x;
if (x >= MOD) { x %= MOD; }
return *this;
}
constexpr auto& operator/=(const ModInt<MOD, T>& m) {
x *= mtd::Math<ModInt<MOD, T>>::pow(m.x, MOD - 2).x;
if (x >= MOD) { x %= MOD; }
return *this;
}
constexpr auto operator+(const ModInt<MOD, T>& m) const {
auto t = *this;
t += m;
return t;
}
constexpr auto operator-(const ModInt<MOD, T>& m) const {
auto t = *this;
t -= m;
return t;
}
constexpr auto operator*(const ModInt<MOD, T>& m) const {
auto t = *this;
t *= m;
return t;
}
constexpr auto operator/(const ModInt<MOD, T>& m) const {
auto t = *this;
t /= m;
return t;
}
constexpr auto& operator+=(const T& t) {
return *this += ModInt<MOD, T>(t);
}
constexpr auto& operator-=(const T& t) {
return *this -= ModInt<MOD, T>(t);
}
constexpr auto& operator*=(const T& n) {
return *this *= ModInt<MOD, T>(n);
}
constexpr auto& operator/=(const T& n) {
return *this /= ModInt<MOD, T>(n);
}
constexpr auto operator+(const T& t) const {
return *this + ModInt<MOD, T>(t);
}
constexpr auto operator-(const T& t) const {
return *this - ModInt<MOD, T>(t);
}
constexpr auto operator*(const T& t) const {
return *this * ModInt<MOD, T>(t);
}
constexpr auto operator/(const T& t) const {
return *this / ModInt<MOD, T>(t);
}
constexpr friend auto operator+(const T& t, const ModInt<MOD, T>& m) {
return m + t;
}
constexpr friend auto operator-(const T& t, const ModInt<MOD, T>& m) {
return -m + t;
}
constexpr friend auto operator*(const T& t, const ModInt<MOD, T>& m) {
return m * t;
}
constexpr friend auto operator/(const T& t, const ModInt<MOD, T>& m) {
return ModInt<MOD, T>(1) / m * t;
}
// 単項演算
constexpr auto operator-() const { return ModInt<MOD, T>(0 - x); }
// 比較演算
constexpr auto operator!=(const ModInt<MOD, T>& m) const {
return x != m.x;
}
constexpr auto operator==(const ModInt<MOD, T>& m) const {
return !(x != m.x);
}
// 入出力
constexpr friend std::ostream& operator<<(std::ostream& os,
const ModInt<MOD, T>& m) {
return os << m.x;
}
constexpr friend std::istream& operator>>(std::istream& is,
ModInt<MOD, T>& m) {
return is >> m.x;
}
constexpr auto val() const { return x; }
static constexpr auto mod() { return MOD; }
};
} // namespace mtd
#line 9 "Test/Graph/Tree/ReRootingDP.test.cpp"
// end:tag includes
using ll = long long;
constexpr ll MOD = 998244353;
using mint = mtd::ModInt<MOD>;
auto math = mtd::Math<mint>();
struct S {
mint m;
ll s;
constexpr S(const mint& m, const ll s) : m(m), s(s) {}
constexpr S() : S(0, 0) {}
};
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
ll n;
std::cin >> n;
std::vector<ll> a(n);
for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; }
auto graph = mtd::Graph<>(n);
for ([[maybe_unused]] auto _ : std::views::iota(0, n - 1)) {
int u, v;
std::cin >> u >> v;
graph.addEdge(u - 1, v - 1);
}
std::vector<mint> at;
for (auto x : a) {
auto size = std::to_string(x).size();
at.emplace_back(math.pow(10, size));
}
auto op = [](const S& a, const S& b) { return S(a.m + b.m, a.s + b.s); };
using M = mtd::Monoid<S, S(0, 0), decltype(op)>;
auto edge_f = [&](const M& m, int f, int t, int c) {
return M(S(m.m_val.m * at[t] + m.m_val.s * a[t], m.m_val.s));
};
auto node_f = [&](const M& m, int i) {
return M(S(m.m_val.m + a[i], m.m_val.s + 1));
};
auto dp = mtd::reRootingDP<M>(graph, edge_f, node_f);
mint ans = 0;
for (auto x : dp) { ans += x.m; }
std::cout << ans << std::endl;
}