This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/1136"
#include <iostream>
// begin:tag includes
#include "../../Library/Math/Matrix.hpp"
#include "../../Library/Math/ModInt.hpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
constexpr long long MOD = 1e9 + 7;
using mint = mtd::ModInt<MOD>;
long long n;
std::cin >> n;
mtd::Matrix<mint> mat({{-1, 1}, {0, 3}});
auto mat_p = mat.pow(n);
mint ans = mat_p[0][0] + mat_p[0][1];
std::cout << ans << std::endl;
}#line 1 "Test/Math/Matrix_pow.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1136"
#include <iostream>
// begin:tag includes
#line 2 "Library/Math/Matrix.hpp"
#include <cassert>
#line 5 "Library/Math/Matrix.hpp"
#include <vector>
namespace mtd {
template <class T>
class Matrix {
int h, w;
std::vector<std::vector<T>> mat;
public:
Matrix(const std::vector<std::vector<T>>& _mat)
: h(_mat.size()), w(_mat[0].size()), mat(_mat) {}
inline static auto identity(int size) {
std::vector<std::vector<T>> ret(size, std::vector<T>(size));
for (int i = 0; i < size; ++i) { ret[i][i] = 1; }
return Matrix(ret);
}
auto begin() const { return mat.begin(); }
auto end() const { return mat.end(); }
const auto& operator[](int i) const { return mat[i]; }
auto& operator[](int i) { return mat[i]; }
auto operator*(const Matrix& tgt) const {
assert(w == tgt.h);
std::vector<std::vector<T>> ret(h, std::vector<T>(tgt.w));
for (int i = 0; i < h; ++i)
for (int j = 0; j < tgt.w; ++j) {
for (int k = 0; k < w; ++k) { ret[i][j] += mat[i][k] * tgt[k][j]; }
}
return Matrix(ret);
}
auto pow(long long n) const {
assert(h == w);
auto ret = identity(h);
auto now = *this;
while (n) {
if (n & 1) { ret = ret * now; }
n >>= 1;
now = now * now;
}
return ret;
}
};
} // namespace mtd
#line 2 "Library/Math/ModInt.hpp"
#line 4 "Library/Math/ModInt.hpp"
#include <iterator>
#line 2 "Library/Math/Math.hpp"
#include <cmath>
#include <numeric>
#include <optional>
#include <ranges>
#include <unordered_map>
#line 9 "Library/Math/Math.hpp"
#line 2 "Library/Math/EuclideanAlgorithm.hpp"
#line 5 "Library/Math/EuclideanAlgorithm.hpp"
#include <tuple>
namespace mtd {
class EuclideanAlgorithm {
using T = long long;
// 大きすぎるとオーバーフローしてしまう
const static inline T m_mx = 1e9;
const T m_a;
const T m_b;
const T m_c;
T m_gcd;
T m_x;
T m_y;
auto excludedEuclidAlgorithm(T a, T b) -> std::tuple<T, T, T> {
if (a < 0) {
auto [g, x, y] = excludedEuclidAlgorithm(-a, -b);
return {g, -x, -y};
}
if (b == 0) { return {a, 1, 0}; }
auto [g, y, x] = excludedEuclidAlgorithm(b, a % b);
y -= a / b * x;
return {g, x, y};
}
auto kRange(T x, T b, T l) const -> std::pair<T, T> {
// x + b * k >= l を満たす k の範囲を求める
T xd = (l - x);
if (b == 0 && x >= l) { return {-m_mx, m_mx}; }
if (b == 0 && x < l) { return {m_mx, -m_mx}; }
if (b > 0 && xd < 0) { return {xd / b, m_mx}; }
if (b > 0 && xd >= 0) { return {(xd + b - 1) / b, m_mx}; }
if (b < 0 && xd < 0) { return {-m_mx, (-xd) / (-b)}; }
if (b < 0 && xd >= 0) { return {-m_mx, -(xd - b - 1) / (-b)}; }
return {m_mx, -m_mx};
}
public:
auto debug() const {
std::cout << m_a << " * " << m_x << " + " << m_b << " * " << m_y << " = "
<< m_c << std::endl;
std::cout << "calc: " << m_a * m_x + m_b * m_y << " = " << m_c
<< std::endl;
}
EuclideanAlgorithm(T a, T b, T c) : m_a(a), m_b(b), m_c(c) {
if (a == 0 && b == 0) { throw std::runtime_error(""); }
auto [g, x, y] = excludedEuclidAlgorithm(a, b);
if (c % g > 0) {
throw std::runtime_error(
"There is no solution to the equation. c must be divisible by "
"gcd(a,b).");
}
m_gcd = g;
m_x = c / g * x;
m_y = c / g * y;
}
EuclideanAlgorithm(T a, T b) : EuclideanAlgorithm(a, b, std::gcd(a, b)) {}
auto gcd() const { return m_gcd; }
auto get(T x, T y) const { return m_a * x + m_b * y; }
auto get(T k) const -> std::pair<T, T> {
if (m_b == 0) { return {m_x, m_y - k}; }
if (m_a == 0) { return {m_x + k, m_y}; }
return {m_x + m_b * k, m_y - m_a * k};
}
// x>=x_lとなるようなkの範囲
auto getMinX(T x_l = 0) const -> std::pair<T, T> {
return kRange(m_x, m_b, x_l);
}
// y>=y_lとなるようなkの範囲
auto getMinY(T y_l = 0) const -> std::pair<T, T> {
return kRange(m_y, -1 * m_a, y_l);
}
// x>=x_l, y>=y_lとなるようなkの範囲
auto getMin(T x_l = 0, T y_l = 0) const -> std::pair<T, T> {
auto [xl, xr] = getMinX(x_l);
auto [yl, yr] = getMinY(y_l);
return {std::max(xl, yl), std::min(xr, yr)};
}
};
} // namespace mtd
#line 11 "Library/Math/Math.hpp"
namespace mtd {
template <class T>
class Math {
const std::vector<T> m_fac;
const std::vector<T> m_finv;
auto constructFac(int s) {
std::vector<T> fac(s);
fac[0] = fac[1] = 1;
for (long long i = 2; i < s; ++i) { fac[i] = fac[i - 1] * i; }
return fac;
}
auto constructInv(int s) {
std::vector<T> finv(s);
finv[s - 1] = 1 / m_fac[s - 1];
for (long long i = s - 2; i >= 0; --i) {
finv[i] = finv[i + 1] * (i + 1);
}
return finv;
}
public:
constexpr Math(int size = 3 * static_cast<int>(1e6))
: m_fac(constructFac(size)), m_finv(constructInv(size)) {}
/* O(log b) */
static constexpr T pow(T a, long long b) {
T ans = 1;
while (b > 0) {
if (b & 1) { ans *= a; }
b >>= 1;
a *= a;
}
return ans;
}
/* O(log mod) */
template <class S>
static constexpr std::optional<long long> log(S x, S y, S mod) {
x %= mod;
y %= mod;
if (mod == 1) { return 0; }
if (x == 0 && y == 0) { return 1; }
if (x == 0 && y == 1) { return 0; }
if (x == 0) { return std::nullopt; }
if (y == 1) { return 0; }
if (auto g = std::gcd(x, mod); g > 1) {
if (y % g) { return std::nullopt; }
auto nx = x / g;
auto nmod = mod / g;
auto ea = mtd::EuclideanAlgorithm(nx, -nmod, 1);
auto [t, _] = ea.getMinX();
auto [nx_inv, __] = ea.get(t);
nx_inv %= nmod;
if (auto ans = log(x, y / g * nx_inv, nmod); ans) {
return ans.value() + 1;
} else {
return ans;
}
}
auto s = static_cast<S>(std::sqrt(mod));
S xe = y;
std::unordered_map<S, S> map;
map.reserve(s);
for (auto i : std::views::iota(0, s)) {
(xe *= x) %= mod;
map[xe] = i + 1;
}
S xs = 1;
for ([[maybe_unused]] auto _ : std::views::iota(0, s)) {
(xs *= x) %= mod;
}
S xse = 1;
for (auto i : std::views::iota(0, mod / s + 5)) {
(xse *= xs) %= mod;
if (map.contains(xse)) { return s * (i + 1) - map[xse]; }
}
return std::nullopt;
}
constexpr std::optional<long long> log(long long x,
long long y) requires requires {
typename T::value_type;
T::mod();
}
{ return log(x, y, T::mod()); }
constexpr auto fact(int n) const { return (n < 0) ? 0 : m_fac[n]; }
constexpr auto factInv(int n) const { return (n < 0 ? 0 : m_finv[n]); }
constexpr auto comb(int n, int r) const {
return fact(n) * factInv(r) * factInv(n - r);
}
constexpr auto perm(int n, int r) const { return fact(n) * factInv(n - r); }
};
} // namespace mtd
#line 7 "Library/Math/ModInt.hpp"
namespace mtd {
template <int MOD, class T = long long>
class ModInt {
public:
using value_type = T;
T x;
constexpr ModInt(T _x) : x(_x >= 0 ? _x % MOD : MOD + (_x % MOD)) {}
constexpr ModInt() : ModInt(0) {}
// 四則演算
constexpr auto& operator+=(const ModInt<MOD, T>& m) {
x += m.x;
if (x >= MOD) { x -= MOD; }
return *this;
}
constexpr auto& operator-=(const ModInt<MOD, T>& m) {
x -= m.x;
if (x < 0) { x += MOD; }
return *this;
}
constexpr auto& operator*=(const ModInt<MOD, T>& m) {
x *= m.x;
if (x >= MOD) { x %= MOD; }
return *this;
}
constexpr auto& operator/=(const ModInt<MOD, T>& m) {
x *= mtd::Math<ModInt<MOD, T>>::pow(m.x, MOD - 2).x;
if (x >= MOD) { x %= MOD; }
return *this;
}
constexpr auto operator+(const ModInt<MOD, T>& m) const {
auto t = *this;
t += m;
return t;
}
constexpr auto operator-(const ModInt<MOD, T>& m) const {
auto t = *this;
t -= m;
return t;
}
constexpr auto operator*(const ModInt<MOD, T>& m) const {
auto t = *this;
t *= m;
return t;
}
constexpr auto operator/(const ModInt<MOD, T>& m) const {
auto t = *this;
t /= m;
return t;
}
constexpr auto& operator+=(const T& t) {
return *this += ModInt<MOD, T>(t);
}
constexpr auto& operator-=(const T& t) {
return *this -= ModInt<MOD, T>(t);
}
constexpr auto& operator*=(const T& n) {
return *this *= ModInt<MOD, T>(n);
}
constexpr auto& operator/=(const T& n) {
return *this /= ModInt<MOD, T>(n);
}
constexpr auto operator+(const T& t) const {
return *this + ModInt<MOD, T>(t);
}
constexpr auto operator-(const T& t) const {
return *this - ModInt<MOD, T>(t);
}
constexpr auto operator*(const T& t) const {
return *this * ModInt<MOD, T>(t);
}
constexpr auto operator/(const T& t) const {
return *this / ModInt<MOD, T>(t);
}
constexpr friend auto operator+(const T& t, const ModInt<MOD, T>& m) {
return m + t;
}
constexpr friend auto operator-(const T& t, const ModInt<MOD, T>& m) {
return -m + t;
}
constexpr friend auto operator*(const T& t, const ModInt<MOD, T>& m) {
return m * t;
}
constexpr friend auto operator/(const T& t, const ModInt<MOD, T>& m) {
return ModInt<MOD, T>(1) / m * t;
}
// 単項演算
constexpr auto operator-() const { return ModInt<MOD, T>(0 - x); }
// 比較演算
constexpr auto operator!=(const ModInt<MOD, T>& m) const {
return x != m.x;
}
constexpr auto operator==(const ModInt<MOD, T>& m) const {
return !(x != m.x);
}
// 入出力
constexpr friend std::ostream& operator<<(std::ostream& os,
const ModInt<MOD, T>& m) {
return os << m.x;
}
constexpr friend std::istream& operator>>(std::istream& is,
ModInt<MOD, T>& m) {
return is >> m.x;
}
constexpr auto val() const { return x; }
static constexpr auto mod() { return MOD; }
};
} // namespace mtd
#line 8 "Test/Math/Matrix_pow.test.cpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
constexpr long long MOD = 1e9 + 7;
using mint = mtd::ModInt<MOD>;
long long n;
std::cin >> n;
mtd::Matrix<mint> mat({{-1, 1}, {0, 3}});
auto mat_p = mat.pow(n);
mint ans = mat_p[0][0] + mat_p[0][1];
std::cout << ans << std::endl;
}