This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/3/ITP1_3_B"
#include <iostream>
// begin:tag includes
#include "../../Library/Range/istream.hpp"
#include "../../Library/Range/util.hpp"
// end:tag includes
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
for (auto [i, x] : mtd::views::istream<int>() | std::views::enumerate |
mtd::views::flatten) {
if (x == 0) { break; }
std::cout << "Case " << i + 1 << ": " << x << std::endl;
}
}#line 1 "Test/Range/flatten.test.cpp"
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/3/ITP1_3_B"
#include <iostream>
// begin:tag includes
#line 2 "Library/Range/istream.hpp"
#include <ranges>
#line 2 "Library/Utility/io.hpp"
#line 5 "Library/Utility/io.hpp"
#include <type_traits>
#include <vector>
#line 2 "Library/Utility/Tuple.hpp"
#include <functional>
namespace mtd {
namespace util {
template <class F, class T>
constexpr auto tuple_transform(F&& f, T&& t) {
return std::apply(
[&]<class... Ts>(Ts&&... elems) {
return std::tuple<std::invoke_result_t<F&, Ts>...>(
std::invoke(f, std::forward<Ts>(elems))...);
},
std::forward<T>(t));
}
template <class F, class T>
constexpr auto tuple_for_each(F&& f, T&& t) {
std::apply(
[&]<class... Ts>(Ts&&... elems) {
(std::invoke(f, std::forward<Ts>(elems)), ...);
},
std::forward<T>(t));
}
} // namespace util
} // namespace mtd
#line 9 "Library/Utility/io.hpp"
namespace mtd {
namespace io {
namespace __details {
template <typename T>
concept is_vec = std::same_as<
T, std::vector<typename T::value_type, typename T::allocator_type>>;
template <typename T>
concept is_mat = is_vec<T> && is_vec<typename T::value_type>;
} // namespace __details
template <class T>
constexpr auto _input() {
T x;
std::cin >> x;
return x;
}
template <typename T>
requires requires { typename std::tuple_size<T>::type; }
constexpr auto _input() {
T x;
util::tuple_for_each([](auto&& i) { std::cin >> i; }, x);
return x;
}
template <__details::is_vec T>
constexpr auto _input(int n) {
std::vector<typename T::value_type> v;
v.reserve(n);
for (auto i : std::views::iota(0, n)) {
v.emplace_back(_input<typename T::value_type>());
}
return v;
}
template <__details::is_mat T>
constexpr auto _input(int h, int w) {
T mat;
mat.reserve(h);
for (auto i : std::views::iota(0, h)) {
mat.emplace_back(_input<typename T::value_type>(w));
}
return mat;
}
template <int N, class Tuple, class T, class... Args, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Sizes... sizes);
template <int N, class Tuple, __details::is_vec T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes);
template <int N, class Tuple, __details::is_mat T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
Sizes... sizes);
template <int N, class Tuple, class T, class... Args, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Sizes... sizes) {
std::get<N>(t) = _input<T>();
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <int N, class Tuple, __details::is_vec T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes) {
std::get<N>(t) = _input<T>(size);
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <int N, class Tuple, __details::is_mat T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
Sizes... sizes) {
std::get<N>(t) = _input<T>(size_h, size_w);
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <class... Args, class... Sizes>
requires(std::convertible_to<Sizes, size_t>&&...) constexpr auto in(
Sizes... sizes) {
auto base = std::tuple<Args...>();
_tuple_input<0, decltype(base), Args...>(base, sizes...);
return base;
}
} // namespace io
} // namespace mtd
#line 6 "Library/Range/istream.hpp"
namespace mtd {
namespace ranges {
constexpr int _inf = 1e9;
template <class... Args>
struct istream_view
: public std::ranges::view_interface<istream_view<Args...>> {
class iterator {
int count;
std::tuple<Args...> val;
public:
using difference_type = int;
using value_type = decltype(val);
using iterator_concept = std::input_iterator_tag;
constexpr iterator() = default;
constexpr explicit iterator(int _count) : count(_count) {
operator++();
}
constexpr auto operator*() const { return val; }
constexpr auto& operator++() {
--count;
if (count >= 0) { val = io::in<Args...>(); }
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& s) const {
return count == s.count;
}
constexpr auto operator==(std::default_sentinel_t) const {
return count < 0 || std::cin.eof() || std::cin.fail() ||
std::cin.bad();
}
constexpr friend auto operator==(std::default_sentinel_t s,
const iterator& li) {
return li == s;
}
};
int count;
public:
constexpr explicit istream_view(int _count) : count(_count) {}
constexpr explicit istream_view() : istream_view(_inf) {}
constexpr auto begin() const { return iterator(count); }
constexpr auto end() const { return std::default_sentinel; }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_istream_view = requires {
ranges::istream_view(std::declval<_Args>()...);
};
} // namespace __detail
template <class... Args>
struct _Istream {
template <class... _Tp>
requires __detail::__can_istream_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::istream_view<Args...>(std::forward<_Tp>(__e)...);
}
};
template <class... Args>
inline constexpr _Istream<Args...> istream{};
} // namespace views
} // namespace mtd
#line 2 "Library/Range/util.hpp"
#include <algorithm>
#line 6 "Library/Range/util.hpp"
#line 8 "Library/Range/util.hpp"
namespace mtd {
namespace ranges {
namespace __detail {
template <typename... T>
concept __all_random_access = (std::ranges::random_access_range<T> &&
...);
template <typename... T>
concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&
...);
template <typename... T>
concept __all_forward = (std::ranges::forward_range<T> && ...);
template <class... T>
constexpr auto _S_iter_concept() {
if constexpr (__all_random_access<T...>) {
return std::random_access_iterator_tag{};
} else if constexpr (__all_bidirectional<T...>) {
return std::bidirectional_iterator_tag{};
} else if constexpr (__all_forward<T...>) {
return std::forward_iterator_tag{};
} else {
return std::input_iterator_tag{};
}
}
template <typename T>
auto _flatten(const T& t) {
return std::make_tuple(t);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t);
template <typename Head, typename... Tail>
auto _flatten_impl(const Head& head, const Tail&... tail) {
return std::tuple_cat(_flatten(head), _flatten(tail)...);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t) {
return std::apply(
[](const auto&... args) { return _flatten_impl(args...); }, t);
}
} // namespace __detail
template <std::ranges::range _Range>
struct flatten_view
: public std::ranges::view_interface<flatten_view<_Range>> {
class iterator {
public:
std::ranges::iterator_t<_Range> _M_current;
using difference_type = std::ranges::range_difference_t<_Range>;
using value_type = decltype(__detail::_flatten(
std::declval<
std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));
using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());
constexpr iterator() = default;
constexpr explicit iterator(decltype(_M_current) __current)
: _M_current(__current) {}
constexpr auto operator*() const {
return __detail::_flatten(*_M_current);
}
constexpr auto& operator++() {
++_M_current;
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& other) const {
return _M_current == other._M_current;
}
constexpr auto& operator--() requires
__detail::__all_bidirectional<_Range> {
--_M_current;
return *this;
}
constexpr auto operator--(
int) requires __detail::__all_bidirectional<_Range> {
return --*this;
}
constexpr auto operator<=>(const iterator&)
const requires __detail::__all_random_access<_Range>
= default;
constexpr auto operator-(const iterator& itr)
const requires __detail::__all_random_access<_Range> {
return _M_current - itr._M_current;
}
constexpr auto& operator+=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current += n;
return *this;
}
constexpr auto operator+(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp += n;
return __tmp;
}
constexpr friend auto operator+(const difference_type n,
const iterator& itr) requires
__detail::__all_random_access<_Range> {
return itr + n;
}
constexpr auto& operator-=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current -= n;
return *this;
}
constexpr auto operator-(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp -= n;
return __tmp;
}
constexpr auto operator[](const difference_type n)
const requires __detail::__all_random_access<_Range> {
return __detail::_flatten(_M_current[n]);
}
};
class sentinel {
std::ranges::sentinel_t<_Range> _M_end;
public:
constexpr sentinel() = default;
constexpr explicit sentinel(const decltype(_M_end)& __end)
: _M_end(__end) {}
friend constexpr bool operator==(const iterator& __x,
const sentinel& __y) {
return __x._M_current == __y._M_end;
}
};
_Range _M_views;
constexpr explicit flatten_view(const _Range& __views)
: _M_views(__views) {}
constexpr auto begin() { return iterator(std::ranges::begin(_M_views)); }
constexpr auto end() { return sentinel(std::ranges::end(_M_views)); }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_flatten_view = requires {
ranges::flatten_view(std::declval<_Args>()...);
};
} // namespace __detail
struct _Flatten : std::ranges::range_adaptor_closure<_Flatten> {
template <class... _Tp>
requires __detail::__can_flatten_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::flatten_view(std::forward<_Tp>(__e)...);
}
static constexpr bool _S_has_simple_call_op = true;
};
struct _ProductN {
template <class... _Tp>
constexpr auto operator() [[nodiscard]] (_Tp... __e) const {
return std::views::cartesian_product(std::views::iota(0, __e)...);
}
};
inline constexpr _Flatten flatten{};
inline constexpr _ProductN product_n{};
} // namespace views
} // namespace mtd
#line 8 "Test/Range/flatten.test.cpp"
// end:tag includes
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
for (auto [i, x] : mtd::views::istream<int>() | std::views::enumerate |
mtd::views::flatten) {
if (x == 0) { break; }
std::cout << "Case " << i + 1 << ": " << x << std::endl;
}
}