CompetitiveProgrammingCpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub

:heavy_check_mark: Test/Range/flatten.test.cpp

Depends on

Code

#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/3/ITP1_3_B"
#include <iostream>

// begin:tag includes
#include "../../Library/Range/istream.hpp"
#include "../../Library/Range/util.hpp"
// end:tag includes

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  for (auto [i, x] : mtd::views::istream<int>() | std::views::enumerate |
                         mtd::views::flatten) {
    if (x == 0) { break; }
    std::cout << "Case " << i + 1 << ": " << x << std::endl;
  }
}
#line 1 "Test/Range/flatten.test.cpp"
#define PROBLEM \
  "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/3/ITP1_3_B"
#include <iostream>

// begin:tag includes
#line 2 "Library/Range/istream.hpp"

#include <ranges>

#line 2 "Library/Utility/io.hpp"

#line 5 "Library/Utility/io.hpp"
#include <type_traits>
#include <vector>

#line 2 "Library/Utility/Tuple.hpp"

#include <functional>

namespace mtd {
  namespace util {
    template <class F, class T>
    constexpr auto tuple_transform(F&& f, T&& t) {
      return std::apply(
          [&]<class... Ts>(Ts&&... elems) {
            return std::tuple<std::invoke_result_t<F&, Ts>...>(
                std::invoke(f, std::forward<Ts>(elems))...);
          },
          std::forward<T>(t));
    }
    template <class F, class T>
    constexpr auto tuple_for_each(F&& f, T&& t) {
      std::apply(
          [&]<class... Ts>(Ts&&... elems) {
            (std::invoke(f, std::forward<Ts>(elems)), ...);
          },
          std::forward<T>(t));
    }
  }  // namespace util
}  // namespace mtd
#line 9 "Library/Utility/io.hpp"

namespace mtd {
  namespace io {

    namespace __details {
      template <typename T>
      concept is_vec = std::same_as<
          T, std::vector<typename T::value_type, typename T::allocator_type>>;
      template <typename T>
      concept is_mat = is_vec<T> && is_vec<typename T::value_type>;

    }  // namespace __details

    template <class T>
    constexpr auto _input() {
      T x;
      std::cin >> x;
      return x;
    }
    template <typename T>
    requires requires { typename std::tuple_size<T>::type; }
    constexpr auto _input() {
      T x;
      util::tuple_for_each([](auto&& i) { std::cin >> i; }, x);
      return x;
    }
    template <__details::is_vec T>
    constexpr auto _input(int n) {
      std::vector<typename T::value_type> v;
      v.reserve(n);
      for (auto i : std::views::iota(0, n)) {
        v.emplace_back(_input<typename T::value_type>());
      }
      return v;
    }
    template <__details::is_mat T>
    constexpr auto _input(int h, int w) {
      T mat;
      mat.reserve(h);
      for (auto i : std::views::iota(0, h)) {
        mat.emplace_back(_input<typename T::value_type>(w));
      }
      return mat;
    }

    template <int N, class Tuple, class T, class... Args, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Sizes... sizes);
    template <int N, class Tuple, __details::is_vec T, class... Args,
              class Size, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes);
    template <int N, class Tuple, __details::is_mat T, class... Args,
              class Size, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
                                Sizes... sizes);

    template <int N, class Tuple, class T, class... Args, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Sizes... sizes) {
      std::get<N>(t) = _input<T>();
      if constexpr (sizeof...(Args) > 0) {
        _tuple_input<N + 1, Tuple, Args...>(t, sizes...);
      }
    }
    template <int N, class Tuple, __details::is_vec T, class... Args,
              class Size, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes) {
      std::get<N>(t) = _input<T>(size);
      if constexpr (sizeof...(Args) > 0) {
        _tuple_input<N + 1, Tuple, Args...>(t, sizes...);
      }
    }
    template <int N, class Tuple, __details::is_mat T, class... Args,
              class Size, class... Sizes>
    constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
                                Sizes... sizes) {
      std::get<N>(t) = _input<T>(size_h, size_w);
      if constexpr (sizeof...(Args) > 0) {
        _tuple_input<N + 1, Tuple, Args...>(t, sizes...);
      }
    }

    template <class... Args, class... Sizes>
    requires(std::convertible_to<Sizes, size_t>&&...) constexpr auto in(
        Sizes... sizes) {
      auto base = std::tuple<Args...>();
      _tuple_input<0, decltype(base), Args...>(base, sizes...);
      return base;
    }

  }  // namespace io

}  // namespace mtd
#line 6 "Library/Range/istream.hpp"

namespace mtd {
  namespace ranges {

    constexpr int _inf = 1e9;

    template <class... Args>
    struct istream_view
        : public std::ranges::view_interface<istream_view<Args...>> {
      class iterator {
        int count;
        std::tuple<Args...> val;

      public:
        using difference_type = int;
        using value_type = decltype(val);
        using iterator_concept = std::input_iterator_tag;

        constexpr iterator() = default;
        constexpr explicit iterator(int _count) : count(_count) {
          operator++();
        }

        constexpr auto operator*() const { return val; }
        constexpr auto& operator++() {
          --count;
          if (count >= 0) { val = io::in<Args...>(); }
          return *this;
        }
        constexpr auto operator++(int) { return ++*this; }

        constexpr auto operator==(const iterator& s) const {
          return count == s.count;
        }
        constexpr auto operator==(std::default_sentinel_t) const {
          return count < 0 || std::cin.eof() || std::cin.fail() ||
                 std::cin.bad();
        }
        constexpr friend auto operator==(std::default_sentinel_t s,
                                         const iterator& li) {
          return li == s;
        }
      };

      int count;

    public:
      constexpr explicit istream_view(int _count) : count(_count) {}
      constexpr explicit istream_view() : istream_view(_inf) {}
      constexpr auto begin() const { return iterator(count); }
      constexpr auto end() const { return std::default_sentinel; }
    };
  }  // namespace ranges

  namespace views {
    namespace __detail {
      template <typename... _Args>
      concept __can_istream_view = requires {
        ranges::istream_view(std::declval<_Args>()...);
      };
    }  // namespace __detail

    template <class... Args>
    struct _Istream {
      template <class... _Tp>
      requires __detail::__can_istream_view<_Tp...>
      constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
        return ranges::istream_view<Args...>(std::forward<_Tp>(__e)...);
      }
    };

    template <class... Args>
    inline constexpr _Istream<Args...> istream{};
  }  // namespace views

}  // namespace mtd
#line 2 "Library/Range/util.hpp"

#include <algorithm>
#line 6 "Library/Range/util.hpp"

#line 8 "Library/Range/util.hpp"

namespace mtd {
  namespace ranges {

    namespace __detail {
      template <typename... T>
      concept __all_random_access = (std::ranges::random_access_range<T> &&
                                     ...);
      template <typename... T>
      concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&
                                     ...);
      template <typename... T>
      concept __all_forward = (std::ranges::forward_range<T> && ...);

      template <class... T>
      constexpr auto _S_iter_concept() {
        if constexpr (__all_random_access<T...>) {
          return std::random_access_iterator_tag{};
        } else if constexpr (__all_bidirectional<T...>) {
          return std::bidirectional_iterator_tag{};
        } else if constexpr (__all_forward<T...>) {
          return std::forward_iterator_tag{};
        } else {
          return std::input_iterator_tag{};
        }
      }

      template <typename T>
      auto _flatten(const T& t) {
        return std::make_tuple(t);
      }
      template <typename... T>
      auto _flatten(const std::tuple<T...>& t);

      template <typename Head, typename... Tail>
      auto _flatten_impl(const Head& head, const Tail&... tail) {
        return std::tuple_cat(_flatten(head), _flatten(tail)...);
      }
      template <typename... T>
      auto _flatten(const std::tuple<T...>& t) {
        return std::apply(
            [](const auto&... args) { return _flatten_impl(args...); }, t);
      }
    }  // namespace __detail

    template <std::ranges::range _Range>
    struct flatten_view
        : public std::ranges::view_interface<flatten_view<_Range>> {
      class iterator {
      public:
        std::ranges::iterator_t<_Range> _M_current;

        using difference_type = std::ranges::range_difference_t<_Range>;
        using value_type = decltype(__detail::_flatten(
            std::declval<
                std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));
        using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());

        constexpr iterator() = default;
        constexpr explicit iterator(decltype(_M_current) __current)
            : _M_current(__current) {}
        constexpr auto operator*() const {
          return __detail::_flatten(*_M_current);
        }
        constexpr auto& operator++() {
          ++_M_current;
          return *this;
        }
        constexpr auto operator++(int) { return ++*this; }
        constexpr auto operator==(const iterator& other) const {
          return _M_current == other._M_current;
        }
        constexpr auto& operator--() requires
            __detail::__all_bidirectional<_Range> {
          --_M_current;
          return *this;
        }
        constexpr auto operator--(
            int) requires __detail::__all_bidirectional<_Range> {
          return --*this;
        }
        constexpr auto operator<=>(const iterator&)
            const requires __detail::__all_random_access<_Range>
        = default;
        constexpr auto operator-(const iterator& itr)
            const requires __detail::__all_random_access<_Range> {
          return _M_current - itr._M_current;
        }
        constexpr auto& operator+=(const difference_type n) requires
            __detail::__all_random_access<_Range> {
          _M_current += n;
          return *this;
        }
        constexpr auto operator+(const difference_type n)
            const requires __detail::__all_random_access<_Range> {
          auto __tmp = *this;
          __tmp += n;
          return __tmp;
        }
        constexpr friend auto operator+(const difference_type n,
                                        const iterator& itr) requires
            __detail::__all_random_access<_Range> {
          return itr + n;
        }
        constexpr auto& operator-=(const difference_type n) requires
            __detail::__all_random_access<_Range> {
          _M_current -= n;
          return *this;
        }
        constexpr auto operator-(const difference_type n)
            const requires __detail::__all_random_access<_Range> {
          auto __tmp = *this;
          __tmp -= n;
          return __tmp;
        }
        constexpr auto operator[](const difference_type n)
            const requires __detail::__all_random_access<_Range> {
          return __detail::_flatten(_M_current[n]);
        }
      };

      class sentinel {
        std::ranges::sentinel_t<_Range> _M_end;

      public:
        constexpr sentinel() = default;
        constexpr explicit sentinel(const decltype(_M_end)& __end)
            : _M_end(__end) {}

        friend constexpr bool operator==(const iterator& __x,
                                         const sentinel& __y) {
          return __x._M_current == __y._M_end;
        }
      };

      _Range _M_views;
      constexpr explicit flatten_view(const _Range& __views)
          : _M_views(__views) {}
      constexpr auto begin() { return iterator(std::ranges::begin(_M_views)); }
      constexpr auto end() { return sentinel(std::ranges::end(_M_views)); }
    };

  }  // namespace ranges

  namespace views {
    namespace __detail {
      template <typename... _Args>
      concept __can_flatten_view = requires {
        ranges::flatten_view(std::declval<_Args>()...);
      };
    }  // namespace __detail

    struct _Flatten : std::ranges::range_adaptor_closure<_Flatten> {
      template <class... _Tp>
      requires __detail::__can_flatten_view<_Tp...>
      constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
        return ranges::flatten_view(std::forward<_Tp>(__e)...);
      }
      static constexpr bool _S_has_simple_call_op = true;
    };
    struct _ProductN {
      template <class... _Tp>
      constexpr auto operator() [[nodiscard]] (_Tp... __e) const {
        return std::views::cartesian_product(std::views::iota(0, __e)...);
      }
    };

    inline constexpr _Flatten flatten{};
    inline constexpr _ProductN product_n{};
  }  // namespace views
}  // namespace mtd
#line 8 "Test/Range/flatten.test.cpp"
// end:tag includes

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  for (auto [i, x] : mtd::views::istream<int>() | std::views::enumerate |
                         mtd::views::flatten) {
    if (x == 0) { break; }
    std::cout << "Case " << i + 1 << ": " << x << std::endl;
  }
}
Back to top page