This documentation is automatically generated by online-judge-tools/verification-helper
#include "Library/Range/util.hpp"#pragma once
#include <algorithm>
#include <iostream>
#include <ranges>
#include "../Utility/Tuple.hpp"
namespace mtd {
namespace ranges {
namespace __detail {
template <typename... T>
concept __all_random_access = (std::ranges::random_access_range<T> &&
...);
template <typename... T>
concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&
...);
template <typename... T>
concept __all_forward = (std::ranges::forward_range<T> && ...);
template <class... T>
constexpr auto _S_iter_concept() {
if constexpr (__all_random_access<T...>) {
return std::random_access_iterator_tag{};
} else if constexpr (__all_bidirectional<T...>) {
return std::bidirectional_iterator_tag{};
} else if constexpr (__all_forward<T...>) {
return std::forward_iterator_tag{};
} else {
return std::input_iterator_tag{};
}
}
template <typename T>
auto _flatten(const T& t) {
return std::make_tuple(t);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t);
template <typename Head, typename... Tail>
auto _flatten_impl(const Head& head, const Tail&... tail) {
return std::tuple_cat(_flatten(head), _flatten(tail)...);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t) {
return std::apply(
[](const auto&... args) { return _flatten_impl(args...); }, t);
}
} // namespace __detail
template <std::ranges::range _Range>
struct flatten_view
: public std::ranges::view_interface<flatten_view<_Range>> {
class iterator {
public:
std::ranges::iterator_t<_Range> _M_current;
using difference_type = std::ranges::range_difference_t<_Range>;
using value_type = decltype(__detail::_flatten(
std::declval<
std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));
using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());
constexpr iterator() = default;
constexpr explicit iterator(decltype(_M_current) __current)
: _M_current(__current) {}
constexpr auto operator*() const {
return __detail::_flatten(*_M_current);
}
constexpr auto& operator++() {
++_M_current;
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& other) const {
return _M_current == other._M_current;
}
constexpr auto& operator--() requires
__detail::__all_bidirectional<_Range> {
--_M_current;
return *this;
}
constexpr auto operator--(
int) requires __detail::__all_bidirectional<_Range> {
return --*this;
}
constexpr auto operator<=>(const iterator&)
const requires __detail::__all_random_access<_Range>
= default;
constexpr auto operator-(const iterator& itr)
const requires __detail::__all_random_access<_Range> {
return _M_current - itr._M_current;
}
constexpr auto& operator+=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current += n;
return *this;
}
constexpr auto operator+(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp += n;
return __tmp;
}
constexpr friend auto operator+(const difference_type n,
const iterator& itr) requires
__detail::__all_random_access<_Range> {
return itr + n;
}
constexpr auto& operator-=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current -= n;
return *this;
}
constexpr auto operator-(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp -= n;
return __tmp;
}
constexpr auto operator[](const difference_type n)
const requires __detail::__all_random_access<_Range> {
return __detail::_flatten(_M_current[n]);
}
};
class sentinel {
std::ranges::sentinel_t<_Range> _M_end;
public:
constexpr sentinel() = default;
constexpr explicit sentinel(const decltype(_M_end)& __end)
: _M_end(__end) {}
friend constexpr bool operator==(const iterator& __x,
const sentinel& __y) {
return __x._M_current == __y._M_end;
}
};
_Range _M_views;
constexpr explicit flatten_view(const _Range& __views)
: _M_views(__views) {}
constexpr auto begin() { return iterator(std::ranges::begin(_M_views)); }
constexpr auto end() { return sentinel(std::ranges::end(_M_views)); }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_flatten_view = requires {
ranges::flatten_view(std::declval<_Args>()...);
};
} // namespace __detail
struct _Flatten : std::ranges::range_adaptor_closure<_Flatten> {
template <class... _Tp>
requires __detail::__can_flatten_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::flatten_view(std::forward<_Tp>(__e)...);
}
static constexpr bool _S_has_simple_call_op = true;
};
struct _ProductN {
template <class... _Tp>
constexpr auto operator() [[nodiscard]] (_Tp... __e) const {
return std::views::cartesian_product(std::views::iota(0, __e)...);
}
};
inline constexpr _Flatten flatten{};
inline constexpr _ProductN product_n{};
} // namespace views
} // namespace mtd#line 2 "Library/Range/util.hpp"
#include <algorithm>
#include <iostream>
#include <ranges>
#line 2 "Library/Utility/Tuple.hpp"
#include <functional>
namespace mtd {
namespace util {
template <class F, class T>
constexpr auto tuple_transform(F&& f, T&& t) {
return std::apply(
[&]<class... Ts>(Ts&&... elems) {
return std::tuple<std::invoke_result_t<F&, Ts>...>(
std::invoke(f, std::forward<Ts>(elems))...);
},
std::forward<T>(t));
}
template <class F, class T>
constexpr auto tuple_for_each(F&& f, T&& t) {
std::apply(
[&]<class... Ts>(Ts&&... elems) {
(std::invoke(f, std::forward<Ts>(elems)), ...);
},
std::forward<T>(t));
}
} // namespace util
} // namespace mtd
#line 8 "Library/Range/util.hpp"
namespace mtd {
namespace ranges {
namespace __detail {
template <typename... T>
concept __all_random_access = (std::ranges::random_access_range<T> &&
...);
template <typename... T>
concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&
...);
template <typename... T>
concept __all_forward = (std::ranges::forward_range<T> && ...);
template <class... T>
constexpr auto _S_iter_concept() {
if constexpr (__all_random_access<T...>) {
return std::random_access_iterator_tag{};
} else if constexpr (__all_bidirectional<T...>) {
return std::bidirectional_iterator_tag{};
} else if constexpr (__all_forward<T...>) {
return std::forward_iterator_tag{};
} else {
return std::input_iterator_tag{};
}
}
template <typename T>
auto _flatten(const T& t) {
return std::make_tuple(t);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t);
template <typename Head, typename... Tail>
auto _flatten_impl(const Head& head, const Tail&... tail) {
return std::tuple_cat(_flatten(head), _flatten(tail)...);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t) {
return std::apply(
[](const auto&... args) { return _flatten_impl(args...); }, t);
}
} // namespace __detail
template <std::ranges::range _Range>
struct flatten_view
: public std::ranges::view_interface<flatten_view<_Range>> {
class iterator {
public:
std::ranges::iterator_t<_Range> _M_current;
using difference_type = std::ranges::range_difference_t<_Range>;
using value_type = decltype(__detail::_flatten(
std::declval<
std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));
using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());
constexpr iterator() = default;
constexpr explicit iterator(decltype(_M_current) __current)
: _M_current(__current) {}
constexpr auto operator*() const {
return __detail::_flatten(*_M_current);
}
constexpr auto& operator++() {
++_M_current;
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& other) const {
return _M_current == other._M_current;
}
constexpr auto& operator--() requires
__detail::__all_bidirectional<_Range> {
--_M_current;
return *this;
}
constexpr auto operator--(
int) requires __detail::__all_bidirectional<_Range> {
return --*this;
}
constexpr auto operator<=>(const iterator&)
const requires __detail::__all_random_access<_Range>
= default;
constexpr auto operator-(const iterator& itr)
const requires __detail::__all_random_access<_Range> {
return _M_current - itr._M_current;
}
constexpr auto& operator+=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current += n;
return *this;
}
constexpr auto operator+(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp += n;
return __tmp;
}
constexpr friend auto operator+(const difference_type n,
const iterator& itr) requires
__detail::__all_random_access<_Range> {
return itr + n;
}
constexpr auto& operator-=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current -= n;
return *this;
}
constexpr auto operator-(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp -= n;
return __tmp;
}
constexpr auto operator[](const difference_type n)
const requires __detail::__all_random_access<_Range> {
return __detail::_flatten(_M_current[n]);
}
};
class sentinel {
std::ranges::sentinel_t<_Range> _M_end;
public:
constexpr sentinel() = default;
constexpr explicit sentinel(const decltype(_M_end)& __end)
: _M_end(__end) {}
friend constexpr bool operator==(const iterator& __x,
const sentinel& __y) {
return __x._M_current == __y._M_end;
}
};
_Range _M_views;
constexpr explicit flatten_view(const _Range& __views)
: _M_views(__views) {}
constexpr auto begin() { return iterator(std::ranges::begin(_M_views)); }
constexpr auto end() { return sentinel(std::ranges::end(_M_views)); }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_flatten_view = requires {
ranges::flatten_view(std::declval<_Args>()...);
};
} // namespace __detail
struct _Flatten : std::ranges::range_adaptor_closure<_Flatten> {
template <class... _Tp>
requires __detail::__can_flatten_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::flatten_view(std::forward<_Tp>(__e)...);
}
static constexpr bool _S_has_simple_call_op = true;
};
struct _ProductN {
template <class... _Tp>
constexpr auto operator() [[nodiscard]] (_Tp... __e) const {
return std::views::cartesian_product(std::views::iota(0, __e)...);
}
};
inline constexpr _Flatten flatten{};
inline constexpr _ProductN product_n{};
} // namespace views
} // namespace mtd