This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/stern_brocot_tree"
#include <iostream>
#include <ranges>
// begin:tag includes
#include "./../../Library/DataStructure/SternBrocotTree.hpp"
#include "./../../Library/Range/util.hpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int t;
std::cin >> t;
mtd::SternBrocotTree<ll> sbt;
for (auto _ : std::views::iota(0, t)) {
std::string s;
std::cin >> s;
if (s == "ENCODE_PATH") {
ll a, b;
std::cin >> a >> b;
auto path_rle = sbt.encode(a, b);
std::cout << path_rle.size() << (path_rle.empty() ? "" : " ");
for (const auto& [i, right, k] :
path_rle | std::views::enumerate | mtd::views::flatten) {
std::cout << (right ? 'R' : 'L') << " " << k
<< (i == path_rle.size() - 1 ? "" : " ");
}
std::cout << std::endl;
}
if (s == "DECODE_PATH") {
ll k;
std::cin >> k;
std::vector<std::tuple<bool, ll>> path_rle;
for (auto __ : std::views::iota(0, k)) {
char c;
ll n;
std::cin >> c >> n;
path_rle.emplace_back(c == 'R', n);
}
auto [a, b] = sbt.decode(path_rle).get();
std::cout << a << " " << b << std::endl;
}
if (s == "LCA") {
ll a, b, c, d;
std::cin >> a >> b >> c >> d;
auto [f, g] = sbt.lca(a, b, c, d).get();
std::cout << f << " " << g << std::endl;
}
if (s == "ANCESTOR") {
ll k, a, b;
std::cin >> k >> a >> b;
try {
auto [f, g] = sbt.ancestor(a, b, k).get();
std::cout << f << " " << g << std::endl;
} catch (const std::runtime_error& e) { std::cout << -1 << std::endl; }
}
if (s == "RANGE") {
ll a, b;
std::cin >> a >> b;
try {
auto [node_l, node_r] = sbt.range(a, b);
auto [f, g] = node_l.get();
auto [h, k] = node_r.get();
std::cout << f << " " << g << " " << h << " " << k << std::endl;
} catch (const std::runtime_error& e) {
std::cout << e.what() << std::endl;
}
}
}
}#line 1 "Test/DataStructure/SternBrocotTree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/stern_brocot_tree"
#include <iostream>
#include <ranges>
// begin:tag includes
#line 2 "Library/DataStructure/SternBrocotTree.hpp"
#line 4 "Library/DataStructure/SternBrocotTree.hpp"
#include <numeric>
#line 6 "Library/DataStructure/SternBrocotTree.hpp"
#include <stdexcept>
#include <tuple>
#include <vector>
namespace mtd {
template <class T, class CompT = long long>
class SternBrocotTree {
using Path = std::vector<std::tuple<bool, T>>;
static constexpr T MAX_NUM = static_cast<T>(2e18);
static constexpr T MAX_DEN = static_cast<T>(2e18);
class Node {
// 定数倍高速化のため破壊的変更や怪しい仕様あり
T num_l, den_l, num_r, den_r;
Path path_rle;
const T max_num;
const T max_den;
friend std::ostream& operator<<(std::ostream& os, const Node& node) {
return os << node.num_l + node.num_r << "/" << node.den_l + node.den_r
<< ": " << node.num_l << "/" << node.den_l << " "
<< node.num_r << "/" << node.den_r;
}
public:
static constexpr auto get_root(T max_num, T max_den) {
return Node(0, 1, 1, 0, Path(), max_num, max_den);
}
constexpr auto get() const {
return std::make_tuple(num_l + num_r, den_l + den_r);
}
constexpr auto get_l() const { return Node(num_l, den_l); }
constexpr auto get_r() const { return Node(num_r, den_r); }
constexpr auto get_path_rle() const { return path_rle; }
constexpr auto move_left(T d = 1) {
if (num_l > 0) { d = std::min(d, (max_num - num_r - num_l) / num_l); }
if (den_l > 0) { d = std::min(d, (max_den - den_r - den_l) / den_l); }
if (d <= 0) { return false; }
path_rle.emplace_back(false, d);
num_r += d * num_l;
den_r += d * den_l;
return true;
}
constexpr auto move_left_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_l * num_d - den_d * num_l;
T d =
(den_d * (num_l + num_r) - (den_l + den_r) * num_d + tmp - 1) / tmp;
return move_left(d);
}
constexpr auto move_right(T d = 1) {
if (num_r > 0) { d = std::min(d, (max_num - num_l - num_r) / num_r); }
if (den_r > 0) { d = std::min(d, (max_den - den_l - den_r) / den_r); }
if (d <= 0) { return false; }
path_rle.emplace_back(true, d);
num_l += d * num_r;
den_l += d * den_r;
return true;
}
constexpr auto move_right_to(T num, T den) {
auto den_d = static_cast<CompT>(den);
auto num_d = static_cast<CompT>(num);
auto tmp = den_d * num_r - den_r * num_d;
T d =
((den_l + den_r) * num_d - den_d * (num_l + num_r) + tmp - 1) / tmp;
return move_right(d);
}
constexpr static auto generate_node(T num, T den, T max_num, T max_den) {
if (den <= 0) {
throw std::runtime_error("denominator must be positive");
}
if (num < 0) {
throw std::runtime_error("numerator must be non-negative");
}
if (std::gcd(num, den) > 1) {
throw std::runtime_error("numerator and denominator must be coprime");
}
auto node = get_root(max_num, max_den);
while (node.move_left_to(num, den) || node.move_right_to(num, den)) {}
return node;
}
constexpr static auto decode(const Path& path_rle, T max_num = MAX_NUM,
T max_den = MAX_DEN) {
auto node = get_root(max_num, max_den);
for (const auto& [right, k] : path_rle) {
right ? node.move_right(k) : node.move_left(k);
}
return node;
}
constexpr Node(T num_l, T den_l, T num_r, T den_r, Path&& path_rle,
T max_num, T max_den)
: num_l(num_l),
den_l(den_l),
num_r(num_r),
den_r(den_r),
path_rle(std::move(path_rle)),
max_num(max_num),
max_den(max_den) {}
constexpr Node(T num_l, T den_l, T num_r, T den_r)
: Node(num_l, den_l, num_r, den_r, Path(), MAX_NUM, MAX_DEN) {}
constexpr Node(T num, T den)
: Node(generate_node(num, den, MAX_NUM, MAX_DEN)) {}
constexpr auto operator!=(const Node& other) const {
return std::tie(num_l, den_l, num_r, den_r) !=
std::tie(other.num_l, other.den_l, other.num_r, other.den_r);
}
constexpr auto operator==(const Node& other) const {
return !(*this != other);
}
};
public:
/*
* Encode the path from the root to the fraction num/den
**/
constexpr auto encode(const Node& node) const {
return node.get_path_rle();
}
constexpr auto encode(T num, T den) const { return encode(Node(num, den)); }
/*
* Decode the path from the root to the fraction represented by
**/
constexpr auto decode(const Path& path_rle) const {
return Node::decode(path_rle);
}
/*
* Find the lowest common ancestor of two fractions num1/den1 and num2/den2
**/
constexpr auto lca(const Node& node1, const Node& node2) const {
auto path_rle1 = encode(node1);
auto path_rle2 = encode(node2);
Path lca_path;
for (const auto [p1, p2] : std::views::zip(path_rle1, path_rle2)) {
auto [right1, k1] = p1;
auto [right2, k2] = p2;
if (right1 != right2) { return Node::get_root(MAX_NUM, MAX_DEN); }
lca_path.emplace_back(right1, std::min(k1, k2));
if (p1 != p2) { break; }
}
return decode(lca_path);
}
constexpr auto lca(T num1, T den1, T num2, T den2) const {
return lca(Node(num1, den1), Node(num2, den2));
}
/*
* Find the k-th ancestor of the fraction num/den
**/
constexpr auto ancestor(const Node& node, T k) const {
Path k_path_rle;
for (const auto& [right, count] : encode(node)) {
if (count > k) {
k_path_rle.emplace_back(right, k);
k = 0;
break;
} else {
k_path_rle.emplace_back(right, count);
k -= count;
}
}
if (k > 0) { throw std::runtime_error("k is too large for the path"); }
return decode(k_path_rle);
}
constexpr auto ancestor(T num, T den, T k) const {
return ancestor(Node(num, den), k);
}
/*
* Find the lower and upper bounds of the descendants of num/den
**/
constexpr auto range(const Node& node) const {
auto [num, den] = node.get();
if (num == 1 && den == 1) {
return std::make_tuple(Node(0, 0, 0, 1), Node(0, 0, 1, 0));
}
if (den == 1) { return std::make_tuple(node.get_l(), Node(0, 0, 1, 0)); }
if (num == 1) { return std::make_tuple(Node(0, 0, 0, 1), node.get_r()); }
return std::make_tuple(node.get_l(), node.get_r());
}
constexpr auto range(T num, T den) const { return range(Node(num, den)); }
/*
* Create a node representing the fraction num/den
**/
constexpr auto create_node(T num, T den, T max_num = MAX_NUM,
T max_den = MAX_DEN) const {
return Node::generate_node(num, den, max_num, max_den);
}
/*
* Get the root node of the tree
**/
constexpr auto get_root(T max_num = MAX_NUM, T max_den = MAX_DEN) const {
return Node::get_root(max_num, max_den);
}
};
} // namespace mtd
#line 2 "Library/Range/util.hpp"
#include <algorithm>
#line 6 "Library/Range/util.hpp"
#line 2 "Library/Utility/Tuple.hpp"
#include <functional>
namespace mtd {
namespace util {
template <class F, class T>
constexpr auto tuple_transform(F&& f, T&& t) {
return std::apply(
[&]<class... Ts>(Ts&&... elems) {
return std::tuple<std::invoke_result_t<F&, Ts>...>(
std::invoke(f, std::forward<Ts>(elems))...);
},
std::forward<T>(t));
}
template <class F, class T>
constexpr auto tuple_for_each(F&& f, T&& t) {
std::apply(
[&]<class... Ts>(Ts&&... elems) {
(std::invoke(f, std::forward<Ts>(elems)), ...);
},
std::forward<T>(t));
}
} // namespace util
} // namespace mtd
#line 8 "Library/Range/util.hpp"
namespace mtd {
namespace ranges {
namespace __detail {
template <typename... T>
concept __all_random_access = (std::ranges::random_access_range<T> &&
...);
template <typename... T>
concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&
...);
template <typename... T>
concept __all_forward = (std::ranges::forward_range<T> && ...);
template <class... T>
constexpr auto _S_iter_concept() {
if constexpr (__all_random_access<T...>) {
return std::random_access_iterator_tag{};
} else if constexpr (__all_bidirectional<T...>) {
return std::bidirectional_iterator_tag{};
} else if constexpr (__all_forward<T...>) {
return std::forward_iterator_tag{};
} else {
return std::input_iterator_tag{};
}
}
template <typename T>
auto _flatten(const T& t) {
return std::make_tuple(t);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t);
template <typename Head, typename... Tail>
auto _flatten_impl(const Head& head, const Tail&... tail) {
return std::tuple_cat(_flatten(head), _flatten(tail)...);
}
template <typename... T>
auto _flatten(const std::tuple<T...>& t) {
return std::apply(
[](const auto&... args) { return _flatten_impl(args...); }, t);
}
} // namespace __detail
template <std::ranges::range _Range>
struct flatten_view
: public std::ranges::view_interface<flatten_view<_Range>> {
class iterator {
public:
std::ranges::iterator_t<_Range> _M_current;
using difference_type = std::ranges::range_difference_t<_Range>;
using value_type = decltype(__detail::_flatten(
std::declval<
std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));
using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());
constexpr iterator() = default;
constexpr explicit iterator(decltype(_M_current) __current)
: _M_current(__current) {}
constexpr auto operator*() const {
return __detail::_flatten(*_M_current);
}
constexpr auto& operator++() {
++_M_current;
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& other) const {
return _M_current == other._M_current;
}
constexpr auto& operator--() requires
__detail::__all_bidirectional<_Range> {
--_M_current;
return *this;
}
constexpr auto operator--(
int) requires __detail::__all_bidirectional<_Range> {
return --*this;
}
constexpr auto operator<=>(const iterator&)
const requires __detail::__all_random_access<_Range>
= default;
constexpr auto operator-(const iterator& itr)
const requires __detail::__all_random_access<_Range> {
return _M_current - itr._M_current;
}
constexpr auto& operator+=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current += n;
return *this;
}
constexpr auto operator+(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp += n;
return __tmp;
}
constexpr friend auto operator+(const difference_type n,
const iterator& itr) requires
__detail::__all_random_access<_Range> {
return itr + n;
}
constexpr auto& operator-=(const difference_type n) requires
__detail::__all_random_access<_Range> {
_M_current -= n;
return *this;
}
constexpr auto operator-(const difference_type n)
const requires __detail::__all_random_access<_Range> {
auto __tmp = *this;
__tmp -= n;
return __tmp;
}
constexpr auto operator[](const difference_type n)
const requires __detail::__all_random_access<_Range> {
return __detail::_flatten(_M_current[n]);
}
};
class sentinel {
std::ranges::sentinel_t<_Range> _M_end;
public:
constexpr sentinel() = default;
constexpr explicit sentinel(const decltype(_M_end)& __end)
: _M_end(__end) {}
friend constexpr bool operator==(const iterator& __x,
const sentinel& __y) {
return __x._M_current == __y._M_end;
}
};
_Range _M_views;
constexpr explicit flatten_view(const _Range& __views)
: _M_views(__views) {}
constexpr auto begin() { return iterator(std::ranges::begin(_M_views)); }
constexpr auto end() { return sentinel(std::ranges::end(_M_views)); }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_flatten_view = requires {
ranges::flatten_view(std::declval<_Args>()...);
};
} // namespace __detail
struct _Flatten : std::ranges::range_adaptor_closure<_Flatten> {
template <class... _Tp>
requires __detail::__can_flatten_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::flatten_view(std::forward<_Tp>(__e)...);
}
static constexpr bool _S_has_simple_call_op = true;
};
struct _ProductN {
template <class... _Tp>
constexpr auto operator() [[nodiscard]] (_Tp... __e) const {
return std::views::cartesian_product(std::views::iota(0, __e)...);
}
};
inline constexpr _Flatten flatten{};
inline constexpr _ProductN product_n{};
} // namespace views
} // namespace mtd
#line 9 "Test/DataStructure/SternBrocotTree.test.cpp"
// end:tag includes
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int t;
std::cin >> t;
mtd::SternBrocotTree<ll> sbt;
for (auto _ : std::views::iota(0, t)) {
std::string s;
std::cin >> s;
if (s == "ENCODE_PATH") {
ll a, b;
std::cin >> a >> b;
auto path_rle = sbt.encode(a, b);
std::cout << path_rle.size() << (path_rle.empty() ? "" : " ");
for (const auto& [i, right, k] :
path_rle | std::views::enumerate | mtd::views::flatten) {
std::cout << (right ? 'R' : 'L') << " " << k
<< (i == path_rle.size() - 1 ? "" : " ");
}
std::cout << std::endl;
}
if (s == "DECODE_PATH") {
ll k;
std::cin >> k;
std::vector<std::tuple<bool, ll>> path_rle;
for (auto __ : std::views::iota(0, k)) {
char c;
ll n;
std::cin >> c >> n;
path_rle.emplace_back(c == 'R', n);
}
auto [a, b] = sbt.decode(path_rle).get();
std::cout << a << " " << b << std::endl;
}
if (s == "LCA") {
ll a, b, c, d;
std::cin >> a >> b >> c >> d;
auto [f, g] = sbt.lca(a, b, c, d).get();
std::cout << f << " " << g << std::endl;
}
if (s == "ANCESTOR") {
ll k, a, b;
std::cin >> k >> a >> b;
try {
auto [f, g] = sbt.ancestor(a, b, k).get();
std::cout << f << " " << g << std::endl;
} catch (const std::runtime_error& e) { std::cout << -1 << std::endl; }
}
if (s == "RANGE") {
ll a, b;
std::cin >> a >> b;
try {
auto [node_l, node_r] = sbt.range(a, b);
auto [f, g] = node_l.get();
auto [h, k] = node_r.get();
std::cout << f << " " << g << " " << h << " " << k << std::endl;
} catch (const std::runtime_error& e) {
std::cout << e.what() << std::endl;
}
}
}
}