This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/GRL_3_C"
// begin:tag includes
#include "../../../Library/Graph/Normal/StronglyConnectedComponents.hpp"
#include "../../../Library/Graph/Graph.hpp"
#include "../../../Library/Range/istream.hpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
auto [n, m] = mtd::io::in<int, int>();
auto graph = mtd::Graph(n);
for (auto [f, t] : mtd::views::istream<int, int>(m)) { graph.addArc(f, t); }
auto scc = mtd::StronglyConnectedComponents(std::move(graph));
auto [q] = mtd::io::in<int>();
for (auto [u, v] : mtd::views::istream<int, int>(q)) {
std::cout << scc.isSameGroup(u, v) << std::endl;
}
}#line 1 "Test/Graph/Normal/StronglyConnectedComponents.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/GRL_3_C"
// begin:tag includes
#line 2 "Library/Graph/Normal/StronglyConnectedComponents.hpp"
#include <algorithm>
#include <concepts>
#include <ranges>
#include <set>
#include <unordered_set>
#include <vector>
#line 2 "Library/Graph/Graph.hpp"
#include <deque>
#include <iostream>
#line 5 "Library/Graph/Graph.hpp"
#include <tuple>
#line 7 "Library/Graph/Graph.hpp"
namespace mtd {
template <class Node = long long, class Cost = long long>
class Graph {
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) : m_n(n), m_graph(n) {}
Graph(const std::vector<Edges>& edges)
: m_n(edges.size()), m_graph(edges) {}
Graph(int n, const std::vector<std::tuple<Node, Node>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v);
} else {
addEdge(u, v);
}
}
}
Graph(int n, const std::vector<std::tuple<Node, Node, Cost>>& edges,
bool is_arc = false, bool is_index1 = true)
: Graph<Node, Cost>(n) {
for (auto [u, v, c] : edges) {
u -= is_index1;
v -= is_index1;
if (is_arc) {
addArc(u, v, c);
} else {
addEdge(u, v, c);
}
}
}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
addArc(f, t, c);
addArc(t, f, c);
}
auto addArc(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto getEdges(const Node& from) const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}
auto begin() const { return b; }
auto end() const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges() const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
}
return edges;
}
auto getEdgesExcludeCost() const {
std::deque<std::pair<Node, Node>> edges;
for (Node from : std::views::iota(0, m_n)) {
for (const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
}
return edges;
}
auto reverse() const {
auto rev = Graph<Node, Cost>(m_n);
for (const auto& [from, to, c] : getEdges()) { rev.addArc(to, from, c); }
return rev;
}
auto size() const { return m_n; };
auto debug(bool directed = false) const {
for (const auto& [f, t, c] : getEdges()) {
if (f < t || directed) {
std::cout << f << " -> " << t << ": " << c << std::endl;
}
}
}
};
} // namespace mtd
#line 11 "Library/Graph/Normal/StronglyConnectedComponents.hpp"
namespace mtd {
template <class Node, class Cost>
class StronglyConnectedComponents {
struct HashPair {
template <class T1, class T2>
size_t operator()(const std::pair<T1, T2>& p) const {
auto hash1 = std::hash<T1>{}(p.first);
auto hash2 = std::hash<T2>{}(p.second);
size_t seed = 0;
seed ^= hash1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= hash2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
const Graph<Node, Cost> m_graph;
const std::vector<Node> m_group;
template <class F>
constexpr static inline auto dfs(const Graph<Node, Cost>& graph, Node from,
std::vector<bool>& is_used, const F& f)
-> void {
is_used[from] = true;
for (const auto& [to, _] : graph.getEdges(from)) {
if (is_used[to]) { continue; }
dfs(graph, to, is_used, f);
}
f(from);
}
constexpr static auto constructGroup(const Graph<Node, Cost>& graph) {
int n = graph.size();
std::vector<Node> order;
std::vector<bool> is_used(n);
for (auto from : std::views::iota(0, n)) {
if (is_used[from]) { continue; }
dfs(graph, from, is_used, [&](auto f) { order.emplace_back(f); });
}
int g = 0;
std::vector<Node> group(n);
std::vector<bool> is_used2(n);
auto rev = graph.reverse();
for (auto from : order | std::views::reverse) {
if (is_used2[from]) { continue; }
dfs(rev, from, is_used2, [&](auto f) { group[f] = g; });
++g;
}
return group;
}
public:
[[deprecated]] constexpr StronglyConnectedComponents(
const Graph<Node, Cost>& graph)
: m_graph(graph), m_group(constructGroup(m_graph)) {}
// graphのコピーコストが大きいのでこっち推奨
constexpr StronglyConnectedComponents(Graph<Node, Cost>&& graph)
: m_graph(std::move(graph)), m_group(constructGroup(m_graph)) {}
constexpr auto size() const {
return *std::max_element(m_group.begin(), m_group.end()) + 1;
}
constexpr auto group(Node a) const { return m_group[a]; }
constexpr auto isSameGroup(Node a, Node b) const {
return m_group[a] == m_group[b];
}
constexpr auto getGroupNodes() const {
std::vector<std::vector<Node>> groupNodes(size());
for (int gi = 0; gi < m_graph.size(); ++gi) {
groupNodes[m_group[gi]].emplace_back(gi);
}
return groupNodes;
}
constexpr auto getGroupGraph() const {
std::unordered_set<std::pair<Node, Node>, HashPair> st;
st.reserve(m_graph.size());
for (int f = 0; f < m_graph.size(); ++f) {
for (const auto& [t, _] : m_graph.getEdges(f)) {
if (!isSameGroup(f, t)) { st.emplace(m_group[f], m_group[t]); }
}
}
Graph<Node, Cost> ret(size());
for (const auto& [f, t] : st) { ret.addArc(f, t); }
return ret;
}
};
} // namespace mtd
#line 5 "Test/Graph/Normal/StronglyConnectedComponents.test.cpp"
#line 2 "Library/Range/istream.hpp"
#line 4 "Library/Range/istream.hpp"
#line 2 "Library/Utility/io.hpp"
#line 5 "Library/Utility/io.hpp"
#include <type_traits>
#line 7 "Library/Utility/io.hpp"
#line 2 "Library/Utility/Tuple.hpp"
#include <functional>
namespace mtd {
namespace util {
template <class F, class T>
constexpr auto tuple_transform(F&& f, T&& t) {
return std::apply(
[&]<class... Ts>(Ts&&... elems) {
return std::tuple<std::invoke_result_t<F&, Ts>...>(
std::invoke(f, std::forward<Ts>(elems))...);
},
std::forward<T>(t));
}
template <class F, class T>
constexpr auto tuple_for_each(F&& f, T&& t) {
std::apply(
[&]<class... Ts>(Ts&&... elems) {
(std::invoke(f, std::forward<Ts>(elems)), ...);
},
std::forward<T>(t));
}
} // namespace util
} // namespace mtd
#line 9 "Library/Utility/io.hpp"
namespace mtd {
namespace io {
namespace __details {
template <typename T>
concept is_vec = std::same_as<
T, std::vector<typename T::value_type, typename T::allocator_type>>;
template <typename T>
concept is_mat = is_vec<T> && is_vec<typename T::value_type>;
} // namespace __details
template <class T>
constexpr auto _input() {
T x;
std::cin >> x;
return x;
}
template <typename T>
requires requires { typename std::tuple_size<T>::type; }
constexpr auto _input() {
T x;
util::tuple_for_each([](auto&& i) { std::cin >> i; }, x);
return x;
}
template <__details::is_vec T>
constexpr auto _input(int n) {
std::vector<typename T::value_type> v;
v.reserve(n);
for (auto i : std::views::iota(0, n)) {
v.emplace_back(_input<typename T::value_type>());
}
return v;
}
template <__details::is_mat T>
constexpr auto _input(int h, int w) {
T mat;
mat.reserve(h);
for (auto i : std::views::iota(0, h)) {
mat.emplace_back(_input<typename T::value_type>(w));
}
return mat;
}
template <int N, class Tuple, class T, class... Args, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Sizes... sizes);
template <int N, class Tuple, __details::is_vec T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes);
template <int N, class Tuple, __details::is_mat T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
Sizes... sizes);
template <int N, class Tuple, class T, class... Args, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Sizes... sizes) {
std::get<N>(t) = _input<T>();
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <int N, class Tuple, __details::is_vec T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size, Sizes... sizes) {
std::get<N>(t) = _input<T>(size);
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <int N, class Tuple, __details::is_mat T, class... Args,
class Size, class... Sizes>
constexpr auto _tuple_input(Tuple& t, Size size_h, Size size_w,
Sizes... sizes) {
std::get<N>(t) = _input<T>(size_h, size_w);
if constexpr (sizeof...(Args) > 0) {
_tuple_input<N + 1, Tuple, Args...>(t, sizes...);
}
}
template <class... Args, class... Sizes>
requires(std::convertible_to<Sizes, size_t>&&...) constexpr auto in(
Sizes... sizes) {
auto base = std::tuple<Args...>();
_tuple_input<0, decltype(base), Args...>(base, sizes...);
return base;
}
} // namespace io
} // namespace mtd
#line 6 "Library/Range/istream.hpp"
namespace mtd {
namespace ranges {
constexpr int _inf = 1e9;
template <class... Args>
struct istream_view
: public std::ranges::view_interface<istream_view<Args...>> {
class iterator {
int count;
std::tuple<Args...> val;
public:
using difference_type = int;
using value_type = decltype(val);
using iterator_concept = std::input_iterator_tag;
constexpr iterator() = default;
constexpr explicit iterator(int _count) : count(_count) {
operator++();
}
constexpr auto operator*() const { return val; }
constexpr auto& operator++() {
--count;
if (count >= 0) { val = io::in<Args...>(); }
return *this;
}
constexpr auto operator++(int) { return ++*this; }
constexpr auto operator==(const iterator& s) const {
return count == s.count;
}
constexpr auto operator==(std::default_sentinel_t) const {
return count < 0 || std::cin.eof() || std::cin.fail() ||
std::cin.bad();
}
constexpr friend auto operator==(std::default_sentinel_t s,
const iterator& li) {
return li == s;
}
};
int count;
public:
constexpr explicit istream_view(int _count) : count(_count) {}
constexpr explicit istream_view() : istream_view(_inf) {}
constexpr auto begin() const { return iterator(count); }
constexpr auto end() const { return std::default_sentinel; }
};
} // namespace ranges
namespace views {
namespace __detail {
template <typename... _Args>
concept __can_istream_view = requires {
ranges::istream_view(std::declval<_Args>()...);
};
} // namespace __detail
template <class... Args>
struct _Istream {
template <class... _Tp>
requires __detail::__can_istream_view<_Tp...>
constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {
return ranges::istream_view<Args...>(std::forward<_Tp>(__e)...);
}
};
template <class... Args>
inline constexpr _Istream<Args...> istream{};
} // namespace views
} // namespace mtd
#line 8 "Test/Graph/Normal/StronglyConnectedComponents.test.cpp"
// end:tag includes
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
auto [n, m] = mtd::io::in<int, int>();
auto graph = mtd::Graph(n);
for (auto [f, t] : mtd::views::istream<int, int>(m)) { graph.addArc(f, t); }
auto scc = mtd::StronglyConnectedComponents(std::move(graph));
auto [q] = mtd::io::in<int>();
for (auto [u, v] : mtd::views::istream<int, int>(q)) {
std::cout << scc.isSameGroup(u, v) << std::endl;
}
}